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Logic and mathematical reasoning

Logic is the foundation of mathematical reasoning.

And this is a old story:

“Depuis les Grecs, qui dit mathématique dit démonstration.” - Nicolas
Bourbaki, Éléments de mathématique, in Introduction of Théorie des
ensembles

Since Frege and Peano’s works and their formalization of arithmetic, a
particular logic seemed well suited to formalizing reasoning mathematics:
First-order logics, its fragments (equational, geometric, regular,
coherent,...), and its higher-order extension.

Since the birth of computer science, a multitude of non-classical logics
have emerged: logics whose formulas are not interpreted in Boolean
algebra.

▸ Intuitionistic logic - Heyting algebra (refusal of the law of
excluded-middle)

▸ Modal logic - modal algebra (specification of the qualities of truth)

▸ Fuzzy logic - residuated lattice (introduction of uncertainty)



Structure of logic

There is a multitude of logics but all of them are characterized by a
fundamental distinction between syntax (language, formulas) and
semantics (interpretation of the language, truth values of the formulas):

Syntax

Inference rules Semantics

Inference ⊢ Satisfaction ⊧

Γ⊢ϕ iff Γ⊧ϕ

▸ Syntax: gives the rules to build formulas and theories

▸ Semantics: interprets elements of syntax in a mathematical universe

▸ Inference: gives rules to obtain symbolically formulas from other
formulas supposed correct.



Categorical logic

Under the leadership of Alfred Tarski, semantics has been formalized to
express properties of structures directly in terms of their constituent
parts: element of sets, functions between sets, relations on sets, etc.

Now, all these ingredients have an equivalent in category theory:

▸ elements of sets can be defined by functions 1→ S where S is a set
and 1 is any singleton;

▸ functions between sets are morphisms in the category of sets Set

▸ relations on sets are morphisms S → ℘(S)
▸ ...

A natural question: may we give a categorical semantics to logics? the
answer is yes, and what’s more, we have a good candidate, toposes.



Toposes

The notion of topos was first defined by A. Grothendieck at the end of
the 1950s to answer problems in algebraic geometry and more precisely
to prove Weil’s conjectures.

A. Grothendieck’s ambition was to abstract the notion of mathematical
space.

Very quickly, it was observed by A. Grothendieck himself that toposes
were a “pastiche” of the sets.

This brought logicians from the 70s under the leadership of Lawvere and
his ambition to reformulate the foundations of mathematics using the
language of category theory, to define a more general notion, elementary
topos from a first and complete axiomatization of Grothendieck toposes,
Giraud’s axioms. Here, the ambition was to abstract the notion of
universe.



Mathematical logics and categories
What was then observed is that depending on the intended logic, the
family of categories used to interpret the formulas is different:

▸ Cartesian categories interpret Horn logic (formulas are finite
conjunctions of atomic formulas);

▸ Regular categories interpret regular logic (formulas are closed under
finite conjunction, and existential quantifications);

▸ Coherent categories interpret coherent logic (formulas are closed
under finite conjunction, finite disjunction, and existential
quantifications);

▸ Geometric categories interpret geometric logic (formulas are
closed under finite conjunction, infinite disjunction, and the
existential quantifier);

▸ Heyting categories interpret intuitionistic first-order logic
(formulas are closed under classical propositional connectives, and
existential and universal quantifiers);

▸ Elementary toposes interpret intuitionistic higher-order logic
(we can quantify on power objects);

▸ Boolean toposes interpret classical logic.



Syntactic considerations - Signature

A signature Σ is a triple (S ,F ,R) where:

▸ S is a set of sorts;

▸ F is a set of function names with profile in S+, i.e.
f ∶ s1 × . . . × sn → s (if n = 0, then f is called a constant).

▸ R is a set of relation names with profile in S∗, i.e.
r ∶ s1 × . . . × sn.

Definition 1.

S∗ and S+ are respectively the set of finite words and the set of unempty
finite words on S .



Propositional signature

Σ = (S ,F ,R) where:

▸ S = F = ∅

▸ R is a set of propositional variables.

Let A be a frame (a complete lattice with infinite distributive law).
Consider the signature ΣA = (SA,FA,RA) with

▸ SA = FA = ∅
▸ RA = {pa ∣ a ∈ A}



Example - Peano’s arithmetic

ΣPeano = (SPeano ,FPeano ,RPeano) where:

▸ SPeano = {nat}

▸ FPeano =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ∶→ nat
succ ∶ nat → nat
+ ∶ nat × nat → nat

⎫⎪⎪⎪⎬⎪⎪⎪⎭

▸ RPeano = ∅.



Example - Presburger’s arithmetic

ΣPres = (SPres ,FPres ,RPres) where:

▸ SPres = {nat}

▸ FPres =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ∶→ nat
1 ∶→ nat
+ ∶ nat × nat → nat

⎫⎪⎪⎪⎬⎪⎪⎪⎭

▸ RPres = {<∶ nat × nat}



Example - Zermelo-Fraenkel’s set theory

ΣZF = (SZF ,FZF ,RZF ) where:

▸ SZF = {Set}

▸ FZF = ∅

▸ RZF = {∈∶ Set × Set}



Example : Group

ΣGrp = (SGrp,FGrp,RGrp) where:

▸ SGrp = {G}

▸ FGrp =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e ∶→ G
+ ∶ G ×G → G
−1 ∶ G → G

⎫⎪⎪⎪⎬⎪⎪⎪⎭

▸ RGrp = ∅



Example - Stack data type

ΣStack = (SStack ,FStack ,RStack) where:

▸ SStack = {Stack,Elem}

▸ FStack =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

empty ∶→ Stack
push ∶ Elem × Stack → Stack
pop ∶ Stack → Stack
top ∶ Stack → Elem

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

▸ RStack = ∅



Exampe : Functors on a category

Lat C be a small category.

ΣC = (SC ,FC ,RC) where:

▸ SC = {⌈X ⌉ ∣ X ∈ ∣C∣}

▸ FC = {⌈f ⌉ ∶ ⌈X ⌉→ ⌈Y ⌉ ∣ f ∶ X → Y ∈ C}

▸ RC = ∅



Example: small categories

ΣCat = (SCat ,FCat ,RCat) where:

▸ SCat = {O,M}

▸ FCat = { 1 ∶ O →M
dom, cod ∶M → O

}

▸ RCat = {Comp ∶M ×M ×M}



Syntactic considerations - Terms

Let Σ = (S ,F ,R) be a signature. Let V = (Vs)s∈S be a set of
typed variables. The set TΣ(V ) = (TΣ(V )s)s∈S of Σ-terms with
variables in V is inductively defined as follows: for every s ∈ S ,
TΣ(V )s contains

▸ all variables of Vs and all constant symbols f ∶→ s ∈ F ;

▸ terms of the form f (t1, . . . , tn) when f ∶ s1 × . . . × sn → s ∈ F ,
and (t1, . . . , tn) ∈ TΣ(V )s1 × . . . ×TΣ(V )sn .

In the following, we denote t ∶ s to mean that t ∈ TΣ(V )s .

Definition 2 (Terms).



Syntactic considerations - Atomic formulas

Let Σ = (S ,F ,R) be a signature and let V = (Vs)s∈S be a set of
variables. An atomic formula is a sentence of the form

▸ t = t ′ where t et t ′ are terms of the same sort;

▸ r(t1, . . . , tn) where r ∶ s1 × . . . × sn ∈ R and
(t1, . . . , tn) ∈ TΣ(V )s1 × . . . ×TΣ(V )sn .

Definition 3 (Atomic formulas).



Syntactic considerations - Formulas

Let Σ = (S ,F ,R) be a signature and let V = (Vs)s∈S be a set of
variables. The set of Σ-formulas is inductively defined as follows:

▸ atomic formulas on Σ and V are Σ-formulas.

▸ � and ⊺ are Σ-formulas.

▸ if ϕ and ψ are Σ-formulas, then ϕ ∧ ψ, ϕ ∨ ψ and ϕ⇒ ψ are
Σ-formulas.

▸ if (ϕi)i∈I is a family of Σ-formulas where I is any index set
(not necessarily finite), then ⋁i∈I ϕi is a Σ-formula
(geometric logic).

▸ if ϕ is a Σ-formula, then ¬ϕ is a Σ-formula.

▸ ϕ is a Σ-formula and x is a variable, then ∀x .ϕ and ∃x .ϕ are
Σ-formulas.

Definition 4 (Formulas).



Syntactic considerations - Sequents and theories

Logical properties in categorical logic are expressed through the notion of
sequents, that is expressions of the form

ϕ ⊢x⃗ ψ
where ϕ and ψ are formulas of same nature (geometric, coherent,
regular, first-order, etc.) and x⃗ = (x1 ∶ s1, . . . , xn ∶ sn) is a context i.e. a
finite list of variables which contains all variables which occur freely in ϕ
and ψ (i.e. they are not in the scope of a quantifier).

The notion of sequent is needed when dealing with positive and
existential logics (geometric, regular, coherent, etc.). In full first-order
logic, this notion is not really needed, the statement ϕ ⊢x⃗ ψ can be
replaced by ⊺ ⊢[] ∀x⃗ .ϕ⇒ ψ.

A Σ-theory is a set of sequents ϕ ⊢x⃗ ψ where ϕ and ψ are Σ-formulas.



Example of propositional geometric theory: Frame

Sequents denoting the relations between elements of A

▸ pa ⊢ pb when a ⪯ b (a,b ∈ A)

▸ ⊺ ⊢ p1

▸ p⋁S ⊢ ⋁a∈S pa (S ⊆ A)

▸ pa ∧ pb ⊢ pa∧b (a,b ∈ A)

Axiomatization of completely prime filters (the finite meets and arbitrary
joins in A are treated logically as finite conjunctions and arbitrary
disjunctions).



Example of F.O. theories - Peano’s arithmetic

Incompleteness and undecidable theory

▸ 0 is not anyone’s successor: ⊺ ⊢[] ∀x .¬(succ(x) = 0)
▸ any individual other than 0 is someone’s successor:

⊺ ⊢[] ∀x .∃y .(¬(x = 0)⇒ succ(y) = x)
▸ succ is an injective mapping:∀x .∀y .(succ(x) = succ(y)⇒ x = y)
▸ recursive definition of +:

▸ ⊺ ⊢x (x + 0 = x)
▸ ⊺ ⊢x,y (x + succ(y) = succ(x + y))

Mathematical induction:

(ϕ(x/0) ∧ ∀x .(ϕ⇒ ϕ(x/succ(x))) ⊢x⃗ ∀x .ϕ



Example of F.O. theory: Presburger’s arithmetic

Decidable theory

▸ 0 is neutral for +: ⊺ ⊢n (n + 0 = n)
▸ + is associative: ⊺ ⊢n,m,p n + (m + p) = (n +m) + p

▸ < is a strict, total and discrete order:
▸ < is strict and total:

▸ Anti-reflexivity: ⊺ ⊢n ¬(n < n)
▸ transitivity: ⊺ ⊢x,y,z (x < y ∧ y < z ⇒ x < z)
▸ anti-symmetric: ⊺ ⊢x,y ¬(x < y ∧ y < x)
▸ total: ⊺ ⊢x,y (x < y ∨ y < x ∨ x = y)

▸ < is discrete:
▸ < is not dense : ⊺ ⊢x ∃y .(x < y ∧ ∀z.(x < z ⇒ (y < z ∨ y = z)))
▸ every element except 0 has a unique predecessor:

⊺ ⊢x,y (y < x ⇒ ∃z.∀w .(z < x ∧ (z < w ⇒ x < w ∨ x = w)))

▸ any element is smaller than its direct successor: ⊺ ⊢n n < n + 1



Example of F.O. theory: ZF’s set theory

Just a sample of the axioms of the theory.

▸ Extensionality axiom

(∀z .z ∈ x ⇔ z ∈ y) ⊢x.y x = y

▸ Axiom for union

⊺ ⊢x ∃y .∀z .(z ∈ y ⇔ ∃w(w ∈ x ∧ z ∈ w))

(y = ⋃w∈x w).

▸ Axiom for powerset

⊺ ⊢x ∃y .∀z .(z ∈ y ⇔ ∀w(w ∈ z ⇒ w ∈ x))

(y = ℘(x))



Example of algebraic theory: group theory

▸ ⊺ ⊢x x + e = e + x = x

▸ ⊺ ⊢x,y ,z x + (y + z) = (x + y) + z

▸ ⊺ ⊢x x + x−1 = x−1 + x = e



Example of algebraic theory: stack theory

▸ ⊺ ⊢[] pop(empty) = empty

▸ ⊺ ⊢S,e pop(push(e,S)) = S

▸ ⊺ ⊢S,e top(push(e,S)) = e



Example of algebraic theory: theory of functors

▸ ⊺ ⊢x ⌈IdX ⌉(x) = x for all object X ∈ ∣C∣

▸ ⊺ ⊢x (⌈g ○ f ⌉)(x) = ⌈g⌉(⌈f ⌉(x)) for all morphisms
f ∶ X → Y and g ∶ Y → Z in C



Example of regular theory: theory of small categories

▸ ⊺ ⊢f Comp(f ,1, f ) and ⊺ ⊢f Comp(1, f , f )

▸
Comp(f ,g ,h) ∧ Comp(g , i , j)

∧
Comp(h, i , k) ∧ Comp(f , j , k ′)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊢f ,g ,h,i,j,k,k ′ k = k ′

▸ dom(f ) = cod(g) ⊢f ,g ∃h.Comp(f ,g ,h)

▸ Comp(f ,g ,h) ∧ Comp(f ,g ,h′) ⊢f ,g ,h,h′ h = h′



Example of higher-order theory: Induction

∀a.(∀b.b ⪯ a ∧ b ∈ P)⇒ a ∈ P ⊢(P,x) x ∈ P



Categorical semantics
Formulas will be interpreted as subobjects in a specific category

Let C be a category. Let X ∈ ∣C∣ be an object.

a ∶ A↣ X ⪯X b ∶ B ↣ X iff ∃x ∶ A→ B, a = b ○ x

Sub(X ) = {[a]≃X
∣ a ∶ A↣ X}

where ≃X is the equivalence relation induced by ⪯X
When C has pullbacks,

Sub ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cop Ð→ Pos
X z→ Sub(X )

f ∶ X → X ′ z→ Sub(f ) ∶ { Sub(X ′) Ð→ Sub(X )
[A′ ↣ X ′]≃X ′ z→ [A↣ X ]≃X

where A↣ X is defined by satifying that the following diagram

A A′

X X ′

is a pullback.



Structures

The notion of structures in a category is a natural generalization of the
usual Tarskian definition of a (set-based) first-order structure. Categories
with finite products are enough to interpret signatures.

Let C be a category with finite products. Let Σ = (S ,F ,R) be a
signature. A Σ-structure M in C is defined by assigning to:

▸ each s ∈ S , an object Ms ∈ ∣C∣,
▸ each f ∶ s1 × . . . × sn → s ∈ F , a morphism
fM ∶Ms1 × . . . ×Msn →Ms ∈ C,

▸ each r ∶ s1 × . . . × sn ∈ R, a subobject
rM ∈ Sub(Ms1 × . . . ×Msn).

Definition 5 (Σ-structure).



Categories of Σ-structures

Denote Σ-Str(C) the category of Σ-structures in C, whose morphisms are
family of morphisms (hs ∶Ms → Ns)s∈S s.t.:

▸ for all f ∶ s1 × . . . × sn → s ∈ F , the diagram:

Ms1 × . . . ×Msn Ms

Ns1 × . . . ×Nsn Ns

fM

hshs1×...×hsn

fN

commutes.

▸ for all r ∶ s1 × . . . × sn ∈ R, there exists a morphism O → O ′ s.t. the
diagram:

O Ms1 × . . . ×Msn

O ′ Ns1 × . . . ×Nsn

µs1
×...×µsn

rM

rN

commutes.



Somes properties

Σ-Str(C) has finite products.

Proposition 1.

Let F ∶ C → D be a functor which preserves finite products. Then,
F induces a functor Σ-Str(F ) ∶ Σ-Str(C)→ Σ-Str(D).

Proposition 2.

More generally, Σ-Str is 2-functorial. Indeeed, we can further show that
any natural transformation α ∶ F ⇒ G with F ,G ∶ C → D induces a
natural transformation Σ-Str(α) ∶ Σ-Str(F )⇒ Σ-Str(G).



Evaluation of terms

Notation. Let x⃗ = (x1 ∶ s1, . . . , xn ∶ sn) be a context. Let M ∈ Σ-Str(C)
be a structure. Denote Mx⃗ =Ms1 × . . . ×Msn .

Let x⃗ .t be a term whose variables are among x⃗ = (x1 ∶ s1, . . . , xn ∶
sn) and t ∶ s. Let M be a Σ-structure. We define by structural
induction on terms the evaluation of x⃗ .t inM, denoted [[x⃗ .t]]M,
as:

▸ if t is a variable xi , then [[x⃗ .t]]M is the canonical projection
pi ∶Ms1 × . . . ×Msn →Msi ;

▸ if t is of the form f (t ′1, . . . t ′m) with t ′1 ∶ s ′1, . . . t ′m ∶ s ′m, then
[[x⃗ .t]]M is the composition

Mx⃗

([[x⃗.t′1]]M,...,[[x⃗.t′m]]M)
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→Ms′1 × . . . ×Ms′m

fMÐÐ→Ms

Definition 6.



Some properties

Let y⃗ .t be a term with variables among y⃗ = (y1 ∶ s1, . . . , yn ∶ sn),
and t ∶ s. Let t⃗ = (t1 ∶ s1, . . . , tn ∶ sn) be a list of terms such
that each of them has variables among x⃗ . Then, [[x⃗ .t[t⃗/y⃗]]] is the

composition Mx⃗
([[x⃗.t1]]M,...,[[x⃗.tn]]M)ÐÐÐÐÐÐÐÐÐÐÐÐ→My⃗

[[y⃗ .t]]MÐÐÐÐ→Ms .

Proposition 3 (Substitution).

Let h ∶M→ N be a morphism of Σ-structures in C, and let x⃗ .t be
a term with t ∶ s Then, the following diagram commutes

Mx⃗ Ms

Nx⃗ Ns

[[x⃗.t]]M

hshs1×...×hsn
[[x⃗.t]]N

Proposition 4 (Naturality).



Satisfaction of formulas
Formulas are interpreted as subobjects defined recursively on the structure
of formulas. For this purpose, we need for every object X of a category C
to require Sub(X ) to satisfy a a supplementary property in order to give
a mathematical meaning to propositional connectives and quantifiers.

At least, Sub(X ) has to be a bounded lattice - interpretation of �, ⊺, ∧,
and ∨.

How to interpret ⇒ and quantifiers ?

⇒ can be interpreted in Heyting algebra

A Heyting algebra H is a bounded lattice such that for all x , y ∈ H,
there exists a greatest element z satisfying x ∧ z ⪯ y . We denote z
by x → y (adjoint).
The pseudo-complement is defined by ¬x = x → � which satisfies:
x ∧ ¬x = �.

Definition 7.

Regarding H as a category, meet ∧ is the product, and then x → y is the
exponential y x (H is CC). Hence, we have that ∧X ⊣ X ⇒ .



Quantifiers

How to interpret quantifiers ?

Quantifiers can be interpreted through the categorical notion of adjoint
functors. Illustrate this in the category of sets Set. Let X and Y be two
sets. Let p ∶ X ×Y → Y be the canonical projection.
Sub(p) ∶ ℘(Y )→ ℘(X ×Y );S ↦ {(x , y) ∣ y ∈ S}. Define
∀p,∃p ∶ ℘(X ×Y )→ ℘(Y ) as:

∀p(S) = {y ∣ ∀x ∈ X , (x , y) ∈ S}

∃p(S) = {y ∣ ∃x ∈ X , (x , y) ∈ S}
We have:

Sub(p)(S) ⊆ T iff S ⊆ ∀p(T )
∃p(S) ⊆ T iff S ⊆ Sub(p)(T )

and then ∃p ⊣ Sub(p) ⊣ ∀p



Categorical interpretation of first-order logic

A Heyting category C is a category such that

▸ it has finite limits;

▸ for every object X ∈ ∣C∣, Sub(X ) has finite unions preserved
by the pullback functors Sub(f );

▸ for each morphism f ∶ X → Y ∈ C,
Sub(f ) ∶ Sub(Y )→ Sub(X ) has a left-adjoint ∃f and a
right-adjoint ∀f which commute with base change i.e.

X X ′ ⇒ Sub(X ′) Sub(X )

Y Y ′ Sub(Y ′) Sub(Y )

x

f f ′

x∗

∃f ′/∀f ′ ∃f /∀f
y

y∗

(Beck-Chevalley condition)

Definition 8 (Heyting categories).

In a Heyting category, Sub(X ) is a Heyting algebra. Given
[m ∶ A↣ X ], [B ↣ X ] ∈ Sub(X ), [A→ B ↣ X ] = ∀m[A ∧B ↣ A].



Lawvere’s hyperdoctrines

A hyperdoctrine consists of a category C with finite limits together
with a functor P ∶ Cop → Heytalg such that for every morphism
f ∶ X → Y ∈ C, the Heyting map P(f ) ∶ P(Y ) → P(X ) has a
left-adjunct and a right-adjunct

∃f ⊣ P(f ) ⊣ ∀f

that satisfy the Beck-Chevalley condition.

Definition 9.

Any Heyting category with its functor Sub ∶ Cop → Pos is a hyperdoctrine.



Syntactic hyperdoctrine: category of context

Let Ctx be the category whose

▸ objects are all α-equivalence classes [x⃗]α of finite sequences
x⃗ = (x1 ∶ s1, . . . , xn ∶ sn) of distinct variables in V ;

▸ morphisms are
▸ context projections py⃗ ∶ x⃗ → y⃗ with x⃗ = z⃗ .y⃗ , and
▸ sequences of terms t⃗ ∶ [x⃗]→ [y⃗] with y⃗ = (y1 ∶ s1, . . . , yn ∶ sn) and
x⃗ = (x1 ∶ s ′1, . . . , xm ∶ s ′m) is a sequence of Σ-terms (t1 ∶ s1, . . . , tn ∶ sn)
such that the variables of each term ti are in {x1, . . . , xm}.

Composition is given by substitution, and the identity arrows by variables.



Syntactic hyperdoctrine for intuitionistic first-order logic
Given a formula x⃗ .ϕ, denote [x⃗ .ϕ]⊣⊢ = {x⃗ .ψ ∣ x⃗ .ϕ ⊣⊢ x⃗ .ψ}. Then, by
defining

[x⃗ .ϕ]⊣⊢ ∧ [x⃗ .ψ]⊣⊢ = [x⃗ .ϕ ∧ ψ]⊣⊢ [x⃗ .ϕ]⊣⊢ ∨ [x⃗ .ψ]⊣⊢ = [x⃗ .ϕ ∨ ψ]⊣⊢

[x⃗ .ϕ]⊣⊢ → [x⃗ .ψ]⊣⊢ = [x⃗ .ϕ⇒ ψ]⊣⊢
the tuple (P([x⃗]),∧,∨,→ �,⊺) is a Heyting algebra (with
P([x⃗]) = {[x⃗ .ϕ]⊣⊢ ∣ x⃗ .ϕ Σ-formula}).

P ∶ Ctxop → Heytalg; [x⃗]↦ P([x⃗]); t⃗ ∶ x⃗ → y⃗ ↦ [y⃗ .ϕ]⊣⊢ ↦ [x⃗ .ϕ(y⃗/t⃗)]⊣⊢

Given a projection morphism px⃗ ∶ y .x⃗ → x⃗ , quantifications are defined by:

∃px⃗ ∶ [y .x⃗ .ϕ]⊣⊢ ↦ [x⃗ .∃yϕ]⊣⊢ ∀px⃗ ∶ [y .x⃗ .ϕ]⊣⊢ ↦ [x⃗ .∀yϕ]⊣⊢
By the rules for the quantifiers, ∃px⃗ ⊣ P(px⃗) ⊣ ∀px⃗ .

Beck-Chevalley condition holds because z⃗ .(∀y .ϕ)[x⃗/t⃗] = z⃗ .∀x .(ϕ[x⃗/t⃗])
and z⃗ .(∃y .ϕ)[x⃗/t⃗] = z⃗ .∃x .(ϕ[x⃗/t⃗])with t⃗ ∶ z⃗ → x⃗ and x⃗ .ϕ is a Σ-formula
(substitution respects quantifiers).



Elementary Toposes: special class of Heyting categories.

Elementary toposes are as a “pastiche” of Set

Set Topos

Initial object ∅ ∅
Terminal object {x} 1
Function space BA cartesian closed
Usual operations ∩,∪ finite limit and

finite colimit
Subobjects ⊆ monics
Subobject classifier {0,1} Ω(Stratification of truth)

Characteristic functions

Y {x}

X {0,1}

!

truem

χm

Y 1

X Ω

!

truem

χm

Power object {0,1}X = ℘(X ) ΩX = PX

Image factorisation A
f→ B = A

s→ Im(f )↪ B A
f→ B = A

e→ Im(f ) m↣ B



More formally

An elementary topos C is a category which is:

▸ finitely complete

▸ cartesian closed (CC), and

▸ has a subobject classifier.

Definition 10.

Having a subobject classifier means that there is a monomorphism out of
the terminal object true ∶ 1↣ Ω such that for every monomorphism
m ∶ Y ↣ X there is a unique morphism χm ∶ X → Ω (called the
characteristic morphism of m) such that the following diagram is a
pullback:

Y 1

X Ω

!

truem

χm



Example: the category of presheaves Ĉ

Ĉ has for objects presheaves F ∶ Cop → Set and as morphisms natural
transformations between them.

Limits in Ĉ are computed pointwise from the computation of limits in Set

By Yoneda’s lemma, we have GF (C) ≃ Nat(Hom( ,C),GF ). But CC
requires that Nat(Hom( ,C),GF ) ≃ Nat(HomC( ,C) × F ,G). Then, let
us set GF (C) = Nat(Hom( ,C) × F ,G).

Ω ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cop Ð→ Set
A z→ Sieve(A)

f ∶ A→ B z→ Ω(f ) ∶ { Sieve(B) Ð→ Sieve(A)
S z→ {g ∶ C → A ∣ f ○ g ∈ S}

trueX ∶ 1(X )→ Ω(X ); 1↦ maximal sieve on X



Subobject classifier in the category of oriented graphs

Let C be the category V
s
((

t

66 E . Presheaves in Ĉ are then oriented

graphs.

Ω is: F

∅

�� t ((
T

s
hh

{s,t}

��

{s,t,idE}

ZZ

Hence, given a subgraph m ∶ G ′ ↪ G , the characteristic mapping χm

works as follows:

▸ all vertices which are not in G ′ are mapped to F ;

▸ all vertices which are in G ′ are mapped to T ;

▸ if an edge is not in G ′, we have 4 possibilities:

1. edges whose source and target are not in G ′ are mapped to ∅;
2. edges whose source is in G ′ but the target is not are mapped to s;
3. edges whose target is in G ′ but the source is not are mapped to t;
4. edges whose source and target are in G ′ are mapped to {s, t};

▸ edges in G ′ are mapped to {s, t, IdE}.



Properties

The following properties hold in any elementary topos C:

▸ C is finitely cocomplete, and then it has an intial and a terminal
object ∅ and 1, and the unique morphism ∅→ X is a
monomorphism.

▸ Every morphism f can be factorized uniquely as mf ○ ef where ef is
an epimorphism and mf is a monomorphism, and then

(A f→ B) = (A ef→ Im(f ) mf↣ B).

▸ Every object X ∈ ∣C∣ has a power object defined by ΩX and denoted
PX . As a power object, it satisfies the following adjunction property:

HomC(X ×Y ,Ω) ≃ HomC(X ,PY )

Sub(X ) ≃ HomC(X ,Ω) ≃ HomC(1,PX ) ([m]≃X
↦ χm)

The transpose of IdPX is the characteristic morphism
∈X ∶ X × PX → Ω generalizing the membership notation of set theory.



Algebrization of subobjects

Let C be an elementary topos. Let X ∈ ∣C∣. (Sub(X ),⪯X ) is a
bounded lattice.

Proposition 5.

Given [f ]≃ and [g]≃ in Sub(X ) with f ∶ A↣ X and g ∶ B ↣ X , their

meet is [A ∩B ↣ A
f↣ X ] equivalent to [A ∩B ↣ B

g↣ X ], and their join
is [A ∪B ↣ X ]. (Sub(X ),⪯X ) is a bounded lattice where [∅↣ X ]≃ and
[idX ]≃ are the lower and upper bounds.

(Sub(X ),⪯) is a Heyting algebra.

Theorem 6.



Elementary toposes are Heyting categories

By Theorem 6, Sub(X ) is a Heyting algebra.

Let C be an elementary topos. Let f ∶ X → Y be a morphism
in C. Sub(f ) ∶ Sub(Y ) → Sub(X ) has a left-adjunct ∃f and a
right-adjunct ∀f which commute with base change.

Theorem 7.

Let us show how to define quantifiers.



Definition of the existential quantifier

Define the functor

∃ ∶ C → C;X ↦ PX ; f ↦ ∃f ∶ PX → PY

whose the transpose in HomC(PX ×Y ,Ω) classifies the image of

g ∶∋X→ PX ×X
IdPX×fÐ→ PX ×Y

Using the bijection Sub(X ) ≃ HomC(1,PX ) we define

∃f ∶ { Sub(X ) Ð→ Sub(Y )
Z ↣ X z→ (∃f ○ (Z ↣ X )♯)♯

where (Z ↣ X )♯ is the transpose of Z ↣ X in HomC(1,PX ).



Definition of universal quantifier
Observe

i ∶ Sub(X )↪ C/X
Define for f ∶ Y → X

f ∗ ∶ C/X → C/Y ;g ∶ Z → X ↦ Z ×X Y

When f ∶ Y → 1, f ∗ ∶ C → C/Y ;g ∶ Z → 1↦ Z ×Y , and in this case

Πf ∗ ∶ C/Y → C/X ;h ∶ Z → Y ↦ 1 ×Y Y ZY → 1

where

1 ×Y Y ZY ZY

1 Y Y

hY

Id#
Y

with Id#
Y transpose of IdY from HomC(1 ×Y ,Y ) ≃ HomC(1,Y Y ).

f ∗ ⊣ Πf ∗

Let f ∶ Y → X . Observe that (C/X )/f ≃ C/Y and then
f ∗ ∶ C/X → C/Y ≃ (C/X )/f (as previous case). We set ∀f = Πf ∗ ○ i .



Interpretation of F.O. formulas
Let C be a Heyting category. Let M ∈ Σ-Str(C). The interpretation of a
formula x⃗ .ϕ in M, denoted [[x⃗ .ϕ]]M, is recursively defined as a
subobject in Sub(Mx⃗) as follows:

▸ [[x⃗ .r(t1, . . . , tn)]]M = [O ′ ↣Mx⃗] such that the diagram is a pullback

O ′ O

Mx⃗ Ms1 × . . . ×Msn

rM

[[x⃗.t⃗]]M

▸ [[x⃗ .t = t ′]]M is the equalizer of [[x⃗ .t]]M, [[x⃗ .t ′]]M ∶Mx⃗ →Ms .
▸ [[x⃗ .�]]M = [∅↣Mx⃗].
▸ [[x⃗ .⊺]]M = [IdMx⃗

].
▸ [[x⃗ .(ψ ∧ χ)]]M = [[x⃗ .ψ]]M ∧ [[x⃗ .χ]]M.
▸ [[x⃗ .(ψ ∨ χ)]]M = [[x⃗ .ψ]]M ∨ [[x⃗ .χ]]M.
▸ [[x⃗ .(ψ⇒ χ)]]M = [[x⃗ .ψ]]M → [[x⃗ .χ]]M.
▸ [[x⃗ .¬ψ]]M = [[x⃗ .ψ]]M → [[x⃗ .�]]M.
▸ [[x⃗ .∃yψ]]M = ∃px⃗.y ,x⃗([[x⃗ .y .ψ]]M) where y ∶ s and
px⃗.y ,x⃗ ∶Mx⃗ ×Ms →Mx⃗ is the canonical projection.

▸ [[x⃗ .∀yψ]]M = ∀px⃗.y ,x⃗([[x⃗ .y .ψ]]M).



Interpretation of sequents

Let C be a Heyting category. Let M ∈ Σ-Str(C). A sequent ϕ ⊢x⃗ ψ is
valid for M if [[x⃗ .ϕ]]M ⪯ [[x⃗ .ψ]]M.

A Σ-structure M is a model of a Σ-theory T if M valids all sequents in
T.

Denote T-Mod(C) the full sub-category of Σ-Str(C) whose objects are all
Σ-structures which valid all the sequents in T.

Let F ∶ C → D be a Heyting functor (i.e. it preserves the Heyting
structure of categories and among others the left and right-adjoints
∃f and ∀f ). Let M ∈ Σ-Str(C). Let σ be Σ-sequent. If M ⊧ σ,
then Σ-Str(F )(M) ⊧ σ. If F is further conservative (it reflects
isomorphisms), the opposite implication holds.

Proposition 8.

And then, Σ-Str(F ) ∶ T-Mod(C)→ T-Mod(D).



Example: interpretation of the theory of frames

Let B be a frame.

Then, the category of frame morphisms

A→ B

is identified with

TA-Mod(B) (interpretation of TA in B)

A standard model of TA can also be described by saying which
propositional symbols pa are assigned the truth value true, and hence by
a subset F ⊆ A which is a completely prime filter, i.e.

TA-Mod(A) = completely prime filters of A



Example: interpretation of the theory of functors

Let E be a Heyting category.

Then, the category of functors

C → E
is identified with

TC-Mod(E)



Interpretation of Peano’s arithmetic

Peano’s arithmetic TP is interpretable in all Heyting categories E with a
natural number objet (NNO) N, i.e. an object N together with

▸ a global elment z ∶ 1→ N

▸ a morphism s ∶ N → N

such that for any A ∈ ∣E ∣, any global element q ∶ 1→ A, and any
f ∶ A→ A, there exists a unique arrow u ∶ N → A such that

1 N N

A A

z

q

s

u u

f

commutes

NNO is initial in TP -Mod(E).



Interpretation of topological group

Let Top be the category of topological spaces.

This category has all finite limits (cartesian category). It can be used to
interpret the group theory TG

The category of topological groups is identified with

TG -Mod(Top)



A more standard approach: Kripke-Joyal semantics
In the Tarskian approach to semantics, the interpretation of formulas is
done pointwise. The problem is that this notion of point which could be
represented by 1→ X does not necessarily make sense in the theory of
topos. A best notion is the one of generalized element U → X . This is
compatible with the categorical approach which sees objetcts through the
morphisms which define them.

Let C be an elementary topos. Let M ∈ Σ-Str(C). Let x⃗ .ϕ be a
Σ-formula. Let α ∶ Y →Mx⃗ be a generalized element. Define:

M ⊧α x⃗ .ϕ iff α factors through [[x⃗ .ϕ]]M

i.e. the following diagram commutes:

{x ∣ ϕ(x)} 1

U Mx⃗ Ω

[[x⃗.ϕ]]M true

ϕ(x)α

Definition 11.

Equivalently this means Im(α) ⪯ {x ∣ ϕ(x)}



Recursive definition on formulas

Let M be a Σ-structure in an elementary topos C.

▸ M ⊧α x⃗ .ϕ ∧ ψ iff M ⊧α x⃗ .ϕ and M ⊧α x⃗ .ϕ;

▸ M ⊧α x⃗ .ϕ ∨ ψ iff there are morphisms p ∶ V → Y and
q ∶W → Y such that p + q ∶ V +W → Y is a jointly
epimorphism, and both M ⊧α○p x⃗ .ϕ and M ⊧α○q x⃗ .ψ;

▸ M ⊧α x⃗ .ϕ⇒ ψ iff for any morphism p ∶ V → Y , if
M ⊧α○p x⃗ .ϕ, then M ⊧α○p x⃗ .ψ;

▸ M ⊧α x⃗ .¬ϕ iff for any morphism p ∶ V → Y , if M ⊧α○p x⃗ .ϕ,
then V ≃ ∅;

For the quantifiers, consider a variable y ∶ s. Then

▸ M ⊧α x⃗ .∃y .ϕ iff there exists an epimorphism p ∶ V → Y and
a generalized element β ∶ V →Ms such that
M ⊧(α○p,β) x⃗ .y .ϕ;

▸ M ⊧α x⃗ .∀y .ϕ iff for every morphism p ∶ V → Y and every
generalized element β ∶ V →Ms , one has M ⊧(α○p,β) x⃗ .y .ϕ;

Theorem 9.



Interpretation of higher-order logic
Elementary toposes allow to interpret higher-order logic. Signatures for
higher-order logics are also triples Σ = (S ,F ,R) except that the profile of
function and relations is inductively defined as follows:

▸ basic. S ⊆ Σ-Typ;

▸ product. if A,B ∈ Σ-Typ, then A ×B ∈ Σ-Typ;

▸ exponential. if A,B ∈ Σ-Typ, then BA ∈ Σ-Typ;

▸ power if A ∈ Σ-Typ, then PA ∈ Σ-Typ.

The family of sets TΣ(V ) = (TΣ(V )A∈Σ-Typ with V = (VA)A∈Σ-Typ is a

set of vriables, is then now:

▸ VA ⊆ TΣ(V )A, and all constant symbols f ∶→ A ∈ TΣ(V )A;

▸ For each f ∶ A→ B ∈ F , and each t ∈ TΣ(V )A, f (t) ∈ TΣ(V )B .

▸ For each t ∈ TΣ(V )B and x ∶ A, then λx .t ∈ TΣ(V )BA

▸ For each t ∈ TΣ(V )BA and u ∈ TΣ(V )A, then t(u) ∈ TΣ(V )B .

▸ if t ∈ TΣ(V )A×B , then fst(t) ∈ TΣ(V )A and snd(t) ∈ TΣ(V )B .

▸ if ϕ is a Σ-formula and x ∈ VA, then {x ∣ ϕ} ∈ TΣ(V )PA
Formulas are defined like for first-order logic to which is added the
atomic formula t ∈A u with t ∈ TΣ(V )A and u ∈ TΣ(V )PA.



Interpretation of terms

▸ if t is fst(u) (resp. snd(u)) with u ∈ TΣ(V )A×B , then [[x⃗ .t]]M is

the composition Mx⃗
[[x⃗.u]]MÐ→ MA ×MB

p1→MA where
p1 ∶MA ×MB →MA (resp. p2 ∶MA ×MB →MB)

▸ [[x⃗ .λx .t]]M is the exponential transpose of
[[(x⃗ .x).t]]M ∶Mx⃗ ×MA →MB .

▸ [[x⃗ .t(u)]]M is

Mx⃗ MBA ×MA MB
([[x⃗.t]]M,[[x⃗.u]]M) ev

▸ if t is {x ∣ ϕ} where x ∈ VA, then [[x⃗ .t]]M is the unique morphism
r ∶Mx⃗ → PMA making the diagram a pullback

R ∈X

MA ×Mx⃗ MA × PMA

[[(x.x⃗).ϕ]]M

IdX×r



Interpretation of formulas

[[x⃗ .t ∈A u]]M is the subobjectO ↣Mx⃗ such that the following diagram is
a pullback

O ∈A

Mx⃗ MA × PMA

[[x⃗.t∈Au]]M

([[x⃗.t]]M,[[x⃗.t′]]M)

Proposition 8 can be extended to logical functor (i.e. functor which
preserves the structure of elementary toposes).



Geometric logic and its interpretation in geometric category
What we observe in practice is that most of the first-order theories
naturally arising in Mathematics are geometric.

Problem. How to interpret infinite disjunction ? This leads to the
following class of categories

A category C is geometric if

▸ it is finitely complete;

▸ for each X ∈ ∣C∣,
▸ Sub(X) has arbitrary unions which commute with base

change:

(X f→ Y )Ô⇒ Sub(f )(⋁
i∈I

Ai) =⋁
i∈I

Sub(f )(Ai)

.
▸ for every f ∶ X → Y ∈ C, Sub(f ) has a left-adjunct ∃f which

commutes with base change.

Definition 12.



Grothendieck toposes: a special class of geometric
categories

Grothendieck toposes are based on the notion of Grothendieck topologies
which generalize categorically the notion of cover in topology of an open
by a family of smaller opens.

To present Grothendieck toposes, we first introduce the notions of:

▸ Sieve;

▸ Site

▸ Sheaf on a site.



Sieve

Lat C be a category. Let X ∈ ∣C∣ be an object. A sieve on X is a
collection of morphisms C with codomain X such that if f ∶ Y →
X ∈ C , then for all g ∶ Z → Y ∈ C, f ○ g ∶ Z → Y → X ∈ C .

Let f ∶ Y → X ∈ C be a morphism. The inverse image by f on a
sieve C on X , is the sieve on Y defined by:

f ∗C = {g ∶ Z → Y ∣ f ○ g ∈ C}

Definition 13.



Site

A Grothendieck topology on a category C is a mapping J which
assigns to any object X ∈ ∣C∣ a collection of sieves on X such that:

▸ Maximality. ⋃Y ∈∣C∣HomC(Y ,X ) ∈ J(X ).

▸ Stability. For every morphism f ∶ Y → X ∈ C, and every sieve
C ∈ J(X ), f ∗C ∈ J(Y ) .

▸ Transitivity. For all sieves C and C ′ on X such that:
▸ C ∈ J(X) and
▸ f ∗C ′ ∈ J(Y ) for every morphism f ∶ Y → X ∈ C

C ′ ∈ J(X ).

Sieves in J(X ) are said J-covering.
A site is a pair (C, J) where C is a small category and J is a
Grothendieck topology on C.

Definition 14.



Motivating example of Grothendieck topology

Let T be a topological space. Let us denote by (Θ(T ),⊆) its poset of
opens. Let U ∈ Θ(T ) be an open of T . Let (Ui)i∈I be a family of opens
such that ⋃i∈I Ui = U. (Ui)i∈I is called an open covering of U. Let us
define

Cov((Ui)i∈I ) = {V ∈ Θ(T ) ∣ ∃i ∈ I ,V ⊆ Ui}
By considering Θ(T ) as a category, we have the site (Θ(T ), JΘ(T))
where JΘ(T) is the Grothendieck topology

JΘ(T) ∶ U ↦ {Cov((Ui)i∈I ) ∣ (Ui)i∈I open covering of U}



Sheaf on a site

Let (C, J) be a site. A sheaf on (C, J) is a presehaf F ∶ Cop →
Set such that for every object X ∈ ∣C∣ the following amalgamation
property is satisfied: for all C ∈ J(X ) and all matching families
S = {sf ∈ F (dom(f )) ∣ f ∶ Y → X ∈ C} (i.e. for all morphisms
g ∶ Z → Y ∈ C, sf ○g = F (g)(sf )), then there exists a single element
s ∈ F (X ) such that sf = F (f )(s) for all f ∈ C .

The category Sh(C, J) has for objects all sheaves F ∶ Cop → Set
and for morphisms all natural transformations between them.

A Grothendieck topos is any category equivalent to the category
of sheaves on a site.

Definition 15.



Motivating example of Grothendieck topos

Let T be a topological space. A sheaf F ∶ Θ(T )op → Set is a
contravariant functor which satisfies the additional conditions: if
U ⊆ V ∈ Θ(T ), for every s ∈ F (V ), we denote F (U ⊆ V )(s) = s∣U

1. if U ∈ Θ(T ), (Ui)i∈I is an open covering of U, and s, t ∈ F (U) are
elements such that s∣Ui = t∣Ui for all i ∈ I , then s = t;

2. if U ∈ Θ(T ), (Ui)i∈I is an open covering of U, and given a matching
family {si ∈ F (Ui) ∣ i ∈ I , (∀i , j ∈ I , si ∣Ui∩Uj = sj ∣Ui∩Uj

}, then there is an

element s ∈ F (U) (necessarily unique by (1)) such that s∣Ui = si for
each i ∈ I .

Let us denote Sh(T ) the category of sheaves on T . Then,
Sh(Θ(T ), JΘ(T)) coincides with Sh(T ).



Basic properties

Grothendieck toposes are elementary toposes which further satisfy
for every X ∈ ∣C∣ that Sub(X ) is a complete Heyting algebra.

Theorem 10.

Hence, Grothendieck toposes are geometric categories, and then can be
used to interpret the geometric logic.



Inference systems

Modeling of the notion of formal proof. It is a purely syntactic operation
which transforms sequents into other sequents independently of the
semantic notion of truth.

From axioms, mathematicians allow themselves to deduce theorems by
applying a restricted and universally accepted number of forms of
reasoning called inference rules. Thus, a system of deduction consists of
a choice of a set of axioms and inference rules.

We follow the approach proposed by Gentzen and his sequent calculus
which benefits from the recursive structure of formulas.

An inference system consists of a set of inference rules used to infer
sequents

Γ
σ

σ is infered from a set of sequents Γ.



Axioms

Notation. ϕ ⊣⊢ ψ means both ϕ ⊢ ψ et ψ ⊢ ϕ

▸ Identity. ϕ ⊢x⃗ ϕ
▸ Equality. ⊺ ⊢x x = x

▸ Replacement. x⃗ = y⃗ ∧ϕ ⊢z⃗ ϕ[x⃗/y⃗] (z⃗ contains all the variables of x⃗
and y⃗ as well as all the variables of ϕ)

▸ Negation. ¬ϕ ⊣⊢x⃗ ϕ⇒ �
▸ Distributivity. ϕ ∧ (ψ ∨ χ) ⊢x⃗ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)
▸ Infinite distributivity. ϕ ∧⋁i∈I ϕi ⊢x⃗ ⋁i∈I (ϕ ∧ ϕi)
▸ Frobenius axiom. ϕ ∧ ∃y .ψ ⊢x⃗ ∃y .ϕ ∧ ψ where y ∉ x⃗ .

▸ Classical. ¬¬ϕ ⊢x⃗ ϕ (C is a Boolean topos)

▸ Higher-order logic
▸ projection. ⊺ ⊢x.y fst((x , y)) = x , ⊺ ⊢x.y snd((x , y)) = y and
⊺ ⊢x (fst(x), snd(x)) = x

▸ application. ⊺ ⊢x⃗,z λy .t(z) = t[y/z] and ⊺ ⊢u λx .u(y) = u
▸ membership. z ∈A {y ∶ A ∣ ϕ} ⊣⊢ ϕ[z/y] and
⊺ ⊢x {y ∶ A ∣ y ∈A x} = x (here x ∶ PA)



Structural rules

▸ Cut rule

ϕ ⊢x⃗ ψ ψ ⊢x⃗ χ
ϕ ⊢x⃗ χ

▸ Substitution rule

ϕ ⊢x⃗ ψ
ϕ[x⃗/t⃗] ⊢y⃗ ψ[x⃗/t⃗]

where y⃗ contains all the variables occuring in t⃗.



Rules for propositional connectives
▸ Conjunction.

ϕ ⊢x⃗ ⊺ ϕ∧ψ ⊢x⃗ ϕ ϕ∧ψ ⊢x⃗ ψ ϕ∧ϕ ⊣⊢x⃗ ϕ ϕ∧ψ ⊣⊢x⃗ ψ∧ϕ

ϕ ⊢x⃗ ψ ϕ ⊢x⃗ χ
ϕ ⊢x⃗ ψ ∧ χ

▸ Disjunction.

� ⊢x⃗ ϕ ϕ ⊢x⃗ ϕ ∨ ψ ψ ⊢x⃗ ϕ ∨ ψ ϕ ∨ ψ ⊣⊢x⃗ ψ ∨ ϕ

ϕ ⊢x⃗ χ ψ ⊢x⃗ χ
ϕ ∨ ψ ⊢x⃗ χ

ϕ ∨ ψ ⊢x⃗ χ
ϕ ⊢x⃗ χ

ϕ ∨ ψ ⊢x⃗ χ
ψ ⊢x⃗ χ

▸ Infinite Disjunction.

ϕi ⊢x⃗ ϕ for every i ∈ I
⋁i∈I ϕi ⊢x⃗ ϕ

▸ Implication.

ϕ ∧ ψ ⊢x⃗ χ
ϕ ⊢x⃗ ψ⇒ χ



Rules for quantifiers

▸ Existential quantifier.

ϕ ⊢x⃗.y ψ
∃y .ϕ ⊢x⃗ ψ

under the condition that y is not free in ψ.

▸ Universal quantifier.

ϕ ⊢x⃗.y ψ
ϕ ⊢x⃗ ∀y .ψ



Fragments of first-order logic

▸ Algebraic logic (axioms about equality)

▸ Horn logic (axioms about equality and finite conjunction)

▸ Regular logic (axioms about equality, Frobenius axiom, finite
conjunction, and existential quantification)

▸ Coherent logic (axioms about equality, Frobenius axiom,
distributivity, finite conjunction, finite disjunction, and existential
quantification)

▸ Geometric logic (axioms about equality, Frobenius axiom, infinite
distributivity, finite conjunction, infinite disjunction, and existential
quantification)

▸ Intuitionistic first-order logic (all the finitary rules except the axiom
“classical”)

▸ Classical first-order logic (all the finitary rules).



Soundness and completeness

Let T be first-order (resp. geometric) Σ-theory. If a sequent σ is
provable from T, then it is valid for all Σ-structures in T-Mod(C)
where C is a Heyting (resp. geometric) category.

Theorem 11 (Soundness).

The proof is done by structural induction on proof trees.

The method to prove completeness is to define a model of the theory
whose validation power is equivalent to the inference. The idea is then to
construct a syntactic category whose objects are interpretable in all the
models of a theory T.



Method followed

Let T be a FO (resp. geometric) theory

1. Definition of a covariant functor T-Mod representable by a Heyting
(resp. geometric) category CT, i.e.

T-Mod(E) ≃ Hom(CT,E)
and all models of T-Mod(E) can be deduced from a single model
(the universal object) MT.

When T is a geometric theory, this result can be restricted to
Grothendieck topos. In this case, T-Mod is a contravariant functor,
and then CT is called a classifying topos (Lawvere, Reyes, Makkai,
Joyal, Cole, Bénabou,..., from Hakim and Grothendieck’s works)

2. Generalisation of Godel’s completeness

A sequent σ is T-provable iff it is valid in MT



Syntactic category

Let x⃗ .ϕ and y⃗ .ψ be two Σ-formulas where x⃗ = (x1 ∶ s1, . . . , xn ∶ sn)
and y⃗ = (y1 ∶ s1, . . . , yn ∶ sn). x⃗ .ϕ et y⃗ .ψ are α-equivalent if ψ is
obtained from ϕ by replacing all the free occurences of xi by yi .
Denote {x⃗ .ϕ} the equivalent class of α-equivalence of x⃗ .ϕ.

Definition 16 (α-conversion).

Let T be a Σ-theory. The syntactic category CT of T has for object
all equivalence classes {x⃗ .ϕ}, and for morphism {x⃗ .ϕ}→ {y⃗ .ψ} the
equivalence class of formulas [x⃗ .y⃗ .χ] for ⊣⊢ which are T-provably
functional, i.e. the following sequents are provable in T

ϕ ⊢x⃗ ∃y .χ (Existence)
χ ⊢x⃗.y⃗ ϕ ∧ ψ (Graph of the morphism)
χ ∧ χ[z⃗/y⃗] ⊢x⃗.y⃗ .z⃗ (y⃗ = z⃗) (Unicity)

Definition 17 (Syntactic category).



Basic properties

CT is a category.

Proposition 12.

The identity morphism on {x⃗ .ϕ} is [ϕ ∧ x⃗ = x⃗ ′], and the composition of
[χ] ∶ {x⃗ .ϕ}→ {y⃗ .ψ} and [θ] ∶ {y⃗ .ψ}→ {z⃗ .ρ} is [∃y⃗ .χ ∧ θ].

If T is a first-order (resp. geometric) theory, then CT is a Heyting
(resp. geometric) category. Furthermore, If T is a higher-order
theory, then CT is an elementary topos.

Theorem 13.



Subobjects in syntactic categories

Let T be a Σ-theory.

Let {x⃗ .ϕ} ∈ ∣CT∣.
The subobjects of {x⃗ .ϕ} are monomorphisms

[ψ ∧ x⃗ = x⃗ ′] ∶ {x⃗ ′.ψ[x⃗/x⃗ ′]}↣ {x⃗ .ϕ}

such that the sequent ψ ⊢x⃗ ϕ is T-provable.

The order ⪯ on SubCT({x⃗ .ϕ}) is:

let [ψ ∧ x⃗ = x⃗ ′], [χ ∧ x⃗ = x⃗ ′] ∈ SubCT({x⃗ .ϕ})

[ψ ∧ x⃗ = x⃗ ′] ⪯ [χ ∧ x⃗ = x⃗ ′]
iff

ψ ⊢x⃗ χ is T-provable



Universal model

Let T be a Σ-theory. The universal model MT of T in CT is
defined as:

▸ For every s ∈ S , MTs = {x .⊺} where x ∶ s.

▸ for every f ∶ s1 × . . . × sn → s ∈ F , fMT = [f (x1, . . . , xn) = y]
where [f (x1, . . . , xn) = y] ∶ {x⃗ .⊺}→ {y .⊺},
x⃗ = (x1 ∶ s1, . . . , xn ∶ sn) and y ∶ s.

▸ for every r ∶ s1 × . . . × sn ∈ R,
[r(x1, . . . , xn)] ∶ {x⃗ .r(x1, . . . , xn)}↣ {x⃗ .⊺}

Definition 18.



Completeness

Let T be a Σ-theory. Then,

1. The interpretation of x⃗ .ϕ is the subobject {x⃗ .ϕ}↣ {x⃗ .⊺} in
SubCT(x⃗ .⊺).

2. A sequent ϕ ⊢x⃗ ψ is valid in MT iff it is T-provable.

Theorem 14.

1. is proved by structural induction on ϕ. For 2., if ϕ ⊢x⃗ ψ is T-provable,
then by 1., both are subobjects of {x⃗ .⊺}, and then
[[x⃗ .ϕ]]MT ⪯ [[x⃗ .ψ]]MT . Conversely, if ϕ ⊢x⃗ ψ is valid in MT, then
[[ψ]]MT ⪯ [[ϕ]]MT , and then ψ ⊢x⃗ ϕ is T-provable.

Let T be a first-order (resp. geometric) theory. All sequents σ
which are valid in all models in T-Mod(C) in any Heyting (resp.
geometric) category C are T-provable.

Corollaire 1 (Completeness).



Models as functors

Let T be a first-order (resp. geometric) theory. Then, for every
Heyting (resp. geometric) category D, we have the category equiv-
alence Heyt(CT,D) ≃ T-Mod(D) (resp. Geo(CT,D) ≃ T-Mod(D))
natural in D which F ↦ Σ-Str(F )(MT).

Theorem 15.

The reverse equivalence is
FM ∶ {x⃗ .ϕ}↦ [[x⃗ .ϕ]]M; [θ] ∶ {x⃗ .ϕ}→ {y⃗ .ψ}↦ [[(x⃗ .y⃗).θ]]M (graph of
the morphism). Clearly, we have Σ-Str(FM)(MT) ≃M.

MT is the model associated to IdCT .

Example. For Peano’s arithmetic, MT is an NNO.



Representing object of the functor T-Mod

Denote HeyC the subcategory of Cat whose objects are Heyting
categories and morphisms are Heyting functors. We have the functor:

T-Mod ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

HeyC Ð→ Cat
C z→ T-Mod(C)

F ∶ C → D z→ T-Mod(F ) ∶ { T-Mod(C) Ð→ T-Mod(D)
M z→ Σ-Str(F )(M)

Then, by Theorem 15, CT is a representing object of the functor T-Mod.
This is also true for the category GeoC and ElemT of geometric
categories (with geometric functors) and elementary toposes (with logical
functors).

For the category of Grothendieck toposes, T-Mod ∶ BTop→ Cat is a
contravariant functor. Its representative is called a classifying topos.



The category BTop of Grothendieck toposes

What notion of morphism ? Geometric morphism. Geometric
morphisms generalize the case of continuous functions in topological
spaces. Let f ∶ Y → X be a continuous function between two topological
spaces. f induces the two functors

f ∗ ∶ Sh(X )→ Sh(Y );F ↦ [V ⊆ Y ↦ colim{F (U) ∣ U ⊆ X ∧V ⊆ f −1(U)}]

f∗ ∶ Sh(Y )→ Sh(X );F ↦ [U ⊆ X ↦ F (f −1(U))]
Then, we have that f ∗ ⊣ f∗ (and then f ∗ preserves all small colimits and
f∗ all small limits). Furthermore, f ∗ preserves finite limits.



Geometric morphisms and transformations

Let C andD be two Grothendieck toposes. A geometric morphism
f ∶ C → D consists of a pair of functors f∗ ∶ C → D (direct image
of f ) and f ∗ ∶ D → C (inverse image of f ) such that f ∗ ⊣ f∗ and
f ∗ preserves finite limits.

Definition 19.

A geometric transformation α ∶ f → g between two geometric
morphisms f ,g ∶ C → D is a natural transformation α ∶ f ∗ ⇒ g∗

(equivalently a natural transformation α ∶ g∗ ⇒ f∗).

Definition 20 (Geometric transformation).

BTop is the 2-category of Grothendieck toposes where 1-morphisms are
geometric morphisms and 2-morphisms are geometric transformations.
Geom(C,D) is the category whose objects are geometric morphisms and
morphisms are geometric transformations.



Example of geometric morphisms: sheafication

Let J be a topology on a small category C. Then,

(Ĉ j∗→ Sh(C, J),Sh(C, J) j∗↪ Ĉ)

j ∶ Sh(C, J)→ Ĉ is a geometric morphism where

▸ j∗ ∶ Ĉ → Sh(C, J) is the sheafication functor

▸ j∗ is fully faithful (i.e. j∗ ○ j∗ → IdSh(C,J) is an isomorphism), and

then j ∶ Sh(C, J)→ Ĉ is an embedding of toposes.



Points of topos

The notion of point is a posteriori for topos. Let T be a topological
space. Any x ∈ T induces a continuous function x ∶ {∗}→ T , and then a
geometric morphism x ∶ Set→ Sh(T ) where

x∗ ∶ F ↦ colim{F (U) ∣ U ∈ Θ(T ) ∧ x ∈ U}

x∗ ∶ S ↦ [U ∈ Θ(T )↦ (S if x ∈ U; 1 otherwise)

A point in a Grothendieck topos C is a geometric morphism x ∶
Set → C.
Denote Pt(C) = Geom(Set,C).

Definition 21 (Point).



Diaconescu’s equivalence

Let C be a small category with finite limits. Let J be a Grothendeick
topology on C. Let E be a Grothendeick topos. Then,

Geom(E ,Sh(C, J)) ≃ FlatJ(C,E)

natural in E and where FlatJ(C,E) is the category of flat and J-
continuous functors (i.e. functors which preserve finite limits and
transform J-covering families of C into globally epimorphic families
of E).

Theorem 16.

Sketch of the proof. f ∶ E → Sh(C, J)↦ f ∗ ○ l ∶ C → E where

l ∶ C y→ Ĉ j∗→ Sh(C, J)
F ↦ g ∶ E → Sh(C, J)
such that g∗ = F̂ ○ j∗ and g∗ = j∗ ○RF where F̂ ∶ Ĉ → E ;P ↦ colim(F ○πP)
(πP ∶ ∫ P → C) and RF ∶ Ĉ → E ;X ↦ [Y ↦ HomE(F (Y ),X )].



Functor T-Mod for Grothendieck toposes

Inverse image functors of geometric morphisms preserve finite limits (by
definition) and small colimits (being left-adjunct), so they are geometric
functors.

T-Mod ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

BTopop Ð→ Cat
C z→ T-Mod(C)

f ∶ C → D z→ T-Mod(f ∗) ∶ { T-Mod(D) Ð→ T-Mod(C)
M z→ Σ-Str(f ∗)(M)

Which topology can we associate with CT such that CT represents this
functor?



The syntactic topology JT on CT

Let T be a geometric theory. Let {y⃗ .ψ} ∈ ∣CT∣. A covering family
of {y⃗ .ψ} is a family of morphisms ([θi ] ∶ {x⃗i .ϕi}→ {y⃗ .ψ})i∈I such
that the sequent ψ ⊢y⃗ ⋁i∈I ∃x⃗i .θi is T-provable (i.e. the union of
images is the full object {y⃗ .ψ}).

Definition 22 (Covering family).

Let us define

Cov(([θi ]i∈I ) = {[θχ] ∶ {z⃗ .χ}→ {y⃗ .ψ} ∣ ∃i ∈ I , θχ factors through θi}

JT ∶ {y⃗ .ψ}↦ {Cov(([θi ])i∈I ) ∣ ([θi ])i∈I is a covering family of {y⃗ .ψ}}



Syntactic topology for fragments

▸ Cartesian logic. There exists i ∈ I such that Id ∶ {y⃗ .ψ}→ {y⃗ .ψ}
factors through θi

▸ Regular logic. There exists i ∈ I such that

ψ ⊢y⃗ ∃x⃗i .θi is T-provable

▸ Coherent logic. There exists a finite subset S ⊆ I such that

ψ ⊢y⃗ ⋁
i∈S

∃x⃗i .θi is T-provable



Classifying topos

Let T be a geometric theory. A classifying topos for T is a
Grothendieck topos Set[T] such that for any Grothendieck topos
C, we have the equivalence of categories

Geom(C,Set[T]) ≃ T-Mod(C)

natural in C, i.e. for every geometric morphism f ∶ C → D, the
diagram

Geom(D,Set[T]) T-Mod(D)

Geom(C,Set[T]) T-Mod(C)

≃

○f T-Mod(f ∗)
≃

commutes.

Definition 23.



Sh(CT, JT) is classifying

For every geometric theory T, Sh(CT, JT) is a classifying topos of
T.

Theorem 17.

This rests on

Let T be a geometric theory. Let D be a Grothenedieck topos.
Then, a functor F ∶ CT → D is geometric iff it is flat and JT-
continuous.

Lemme 18.

Sketch of the proof of Theorem 17 By Diaconescu’s equivalence we
have Geom(D,Sh(CT, JT)) ≃ FlatJT(CT,D), and then by the lemma and
Theorem 15 we get the expected result.



Every topos is classifying

Every Grothendieck topos E is the classifying topos of some geo-
metric theories.

Theorem 19.

This rests on

Let C be a small category. Then, a functor F ∶ C → Set is flat iff
its category of element ∫ F is filtered, i.e.:

1. there exists X ∈ ∣C∣ such that F (X ) ≠ ∅.

2. given two elements x ∈ F (X ) and y ∈ F (Y ), there exists an

object Z ∈ ∣C∣, a diagram X
u← Z

v→ Y and an element
z ∈ F (Z) such that F (u)(z) = x and F (v)(z) = y .

3. given two morphisms u, v ∶ X → Y in C and x ∈ F (X ) such
that u(x) = v(x), there w ∶ Z → X and z ∈ ∣Z ∣ such that
u ○w = v ○w and w(z) = x .

Lemme 20.



Extension of the theory of functors TC to the theory of flat
and continuous functors

Let Sh(C, J) be a Grothendeick topos.

▸ Functoriality.
▸ ⊺ ⊢x f (x) = x for all identity morphisms in C
▸ ⊺ ⊢x f (x) = g(h(x)) for all morphisms f , g , and h in C such that
f = g ○ h

▸ Filtering.
▸ ⊺ ⊢[] ⋁X∈∣C∣ ∃x .T where x ∶ X ;
▸ ⊺ ⊢x,y ⋁X

u
←B

v
→Y

∃z .(u(z) = x ∧ v(z) = y) where z ∶ B, x ∶ X , and
y ∶ Y ;

▸ ⊺ ⊢x ⋁w ∶B→X∈Eq(u,v) ∃z .w(z) = x for all pair of morphisms
u, v ∶ X → Y in C where z ∶ B.

▸ Continuity. ⊺ ⊢x ⋁i∈I ∃yi .fi(yi) = x for all J-covering families
(fi ∶ Yi → X )i∈I where yi ∶ Yi and x ∶ X .

For any Grothendieck topos E , TC-Mod(E) is the category of flat and
continuous functors C → E .

Sh(C, J) is the classifying topos of the above theory.



Some consequences
▸ Taking D = Set, Pt(Sh(CT, JT)) is equivalent to the category

T-Mod(Set) of set-theoretic models of T.

▸ By Theorem 17, we have

Geom(Sh(CT, JT),Sh(CT, JT)) ≃ T-Mod(CT)

Denote UT the model associated to IdSh(CT,JT). For every geometric
morphism f ∶ D → Sh(CT, JT), the diagram:

Geom(Sh(CT, JT),Sh(CT, JT)) T-Mod(CT)

Geom(D,Sh(CT, JT)) T-Mod(D)

≃

○f T-Mod(f ∗)
≃

commutes. So, let M ∈ ∣T-Mod(D)∣. Then, there is a geometric
morphism gM ∶ D → Sh(CT, JT) such that Σ-Str(g∗M)(UT) ≃M in
D, and then the functor

f ∶ D → Sh(CT, JT)↦ Σ-Str(f ∗)(UT)

is an equivalence of categories.



Morita-equivalence for geometric theories

Two geometric theories T and T′ are Morita-equivalent if they
have equivalent classifying toposes, equivalently if there is a nat-
ural transformation τ ∶ T-Mod ⇒ T′-Mod such that for every
Grothendieck topos E , τE ∶ T-Mod(E) → T′-Mod(E) is an equiva-
lence of categories.

Definition 24.

From this notion, O. Caramello developped the theory of toposes as
bridges which consists to find non-trivial connections between properties,
concepts and results pertaining to different mathematical theories
through the study of the categorical invariants of their classifying toposes
(transfer of informations between two theories).



For further reading

▸ O. Caramello. Theories, Sites, Toposes: Relating and studying
mathematical theories through topos-theoretic ’bridges’. Oxford
University Press, 2017.

▸ R. I. Goldblatt. Topoi. The categorial analysis of logic. vol. 98 of
Studies in Logic and the Foundations of Math. North-Holland, 1979
(revised second edition, 1984).

▸ P. T. Johnstone. Sketches of an Elephant: a topos theory
compendium. Vols. 1-2, vols. 43-44 of Oxford Logic Guides Oxford
University Press, 2002.

▸ S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic: a first
introduction to topos theory. Springer-Verlag, 1992.

▸ A. M. Pitts. Categorical logic. in: Handbook of logic in computer
science: Vol. 5: Logic and algebraic methods, Oxford University
Press, 2001.
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