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2      G -modules and stacky G -modules

The goals of my talk are

(i) to explain that the standard definition (definition  
R) of a representation of a group is a little bit naïve

(ii) to propose an alternative – categorical –
definition (definition M)

(iii) to show that the categorical definition is
more ”correct” one.
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3     Standard definition

For simplicity I will fix a field k and work with
representations in vector spaces over k.

First consider the case of a discrete group G.
Definition (R). A representation of the group G is
a pair (V , π), where V is a k-vector space and π is
a morphism π : G → Aut(V ).

The category of such representations we denote by
R(G ).
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4   Groupoids

(i)A groupoid is a small category X in which all
morphisms are invertible (i.e. isomorphisms).

A groupoid can be considered geometrically as 
some kind of a space.

(ii)A sheaf (of k-vector spaces) on a groupoid X is
a contravariant functor F from X to the category of
k-vector spaces, F : X 0→ Vec(k).

The category of such sheaves we denote by Sh(X ).
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5  Basic groupoid

Basic groupoid. Starting with a group G we construct its
basic groupoid BG . Namely, BG is the category of G-torsors
T .

Remind that a G-torsor is a G-set T such that T is not
empty and G acts on T simply transitively.

It means that the natural morphism
γ : G × T → T × T ; (g, t) → (gt, t) is an isomorphism.

Morphisms of G-torsors are just morphisms of G-sets.
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6    Quotient groupoid.

If Z is a G-set we define a quotient groupoid BG(Z).  
It is also denoted G\Z .

In case when Z is a one point set pt we get the basic
groupoid, BG (pt) = BG = G\pt.

The object of the category BG(Z) is a pair (T, p), where T
is a G-torsor and p : T → Z a morphism of G-sets.
Morphisms are just G-morphisms over Z .
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7    Stacky G -modules

Definition (M). Given a (discrete) group G let us define the 
category M(G ) of stacky G-modules to be the category of sheaves 
on the basic groupoid BG
M(G ) := Sh(BG).

Proposition. The category M(G ) is canonically equivalent to the 
category R(G ).
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Category BG is equivaling to the full subcategory T (G) ⊂ BG
generated by the trivial torsor T (the set G with the left action of G).

Hence the category M(G ) = Sh(BG) is equivalent to the category 
Sh(T (G)) = R(G )

Similarly, one proves that the category Sh(G\Z) of sheaves on a
quotient groupoid is canonically equivalent to the category ShG (Z ) of
G-equivariant sheaves on Z .
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9   Two definitions –Categories R(G ) and M ( G )

Thus we have two equivalent definitions – (R) and (M) – of the 
category R(G ) = M(G ).

In slides 11 – 13 I explain that, nevertheless, even in the case 
of sets, the definition (M) is better.

The main advantage of the definition (M) is that the category
M(G ) has in a large variety of 
situations.

I will discuss this in slides 14 – 20

In slides 21-31 I will discuss in detail the key example –
Representations of p-adic algebraic groups.
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10     Theory of Groups and theory of Groupoids

We say that a groupoid X is connected if it is not empty and all its 
objects are isomorphic.

Two statements:  

(i) Any groupoid X has a canonical decomposition as a
disjoint union of connected groupoids (they are called the
connected components of X ).

(ii) Let X be a connected groupoid. Fix an object x ∈X and 
consider the group H opposite to the group Mor(x, x).
Then the category X is canonically equivalent to the 
category BH with equivalence described by y →Mor(x, y ).
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11    Symmetries

Suppose we have a group of symmetries Γ that acts on a group G. 
Then it acts on the category R(G ).

However, in many cases it turns out that we can find a large group 
of symmetries Γ that acts on the groupoid BG , and hence on the 
category M(G ) = R(G), but does not act on the group G.

So, if we use the definition (R), it would be difficult to see these
Γ-symmetries.
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12     Example – Fundamental groupoid

Let Z be a nice topological space.

Consider the fundamental groupoid Π(Z) – its objects are the
points of Z , morphisms p ∈Mor(z,w) are homotopy classes of
paths from z to w, and composition is given by concatenation.

If the space Z is connected, then the groupoid Π(Z ) is connected.

If z is a point of Z , then the corresponding group
G=Aut(z) is the fundamental group π1(Z, z).
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13      Action on the fundamental groupoid

Suppose some group Γ continuously acts on the space Z .
Then it acts on the fundamental groupoid Π(Z) and hence
on the category Sh(Π(Z)).

If Z is connected and G = π1(Z, z), then we get an action
of the group Γ on the category R(G ), since                      
R(G) = M(G) = Sh(Π(Z)).

This action is difficult to describe in the language of group 
theory.                       
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14        Switching to other sites

Now move from the site of sets to some other sites.

Fix a site S = (C,T ), where C is a category and T a 
Grothendieck topology on it. Objects of S we will call ”spaces” 
and denote by X, Y , ....

Mostly we are interested in standard sites like Sets, Topological 
spaces (or some interesting subcategories of topological spaces), 
smooth manifolds, algebraic varieties over a field with Zariski 
topology or with some other topology.
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15    Stacks – analogue of groupoids

Analogue of a groupoid in this case is a stack X over the site S.

How to define a stack X over the site S?

First remark that any object Z ∈C can be completely described
in terms of the contravariant functor FZ : C0 → Sets given by
X →Mor(X,Z) (Yoneda lemma).

So we can think about an object Z as a functor F of this type, 
satisfying some compatibility conditions.

Groups, Groupoids, Stacks and Representation Theory.15



16         Stack as a category fibered in groupoigs

In complete analogy, we define a prestack X over S as some 
kind of contravariant ”pseudo-functor” F : C0 → Groupoids ,    
satlsfying some natural conditions.

Then, imposing on the prestack X some glueing conditions. we
get a notion of a stack X over S.     
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17     Basic features of stacks; Basic and Quotient stacks

Here are features of stacks that we are going to use:

(i) Every object Z ∈C can be considered as a stack.

(ii) Let X ,Y be two stacks. Then Mor(X ,Y) is a groupoid.

In particular, every stack Y defines a pseudo-functor:
FY : C0 →Groupoids. It is also defined by this pseudo-functor.

(iii) Let G be a group object in the site S. Then one can
define the basic stack BG .

(iv) More generally, if Z is a G-space one can define the
quotient stack G \ Z .
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18       Sheaves on sites

A system of sheaves on a site S is called a fibered category of
sheaves; we denote such system as Sheaves(S).

For example, suppose S is the site of complex algebraic varieties. 
Given a variety X we can consider quasicoherent sheaves on X , or 
we can consider l-adic etale sheaves on X .

Also, we can pass to the underlying topological space X̃ with usual
topology and consider sheaves on this space. For example, we can
consider derived (or better ∞) category of constructible sheaves on
X̃ .

If we restrict attention to smooth varieties, we can work with
sheaves of modules over the sheaf of smooth functions on the
manifold X̃, and so on.
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19             Sheaves on Stacks

Suppose we fixed some fibered category Sheaves(S) over the
site S and would like to extend it to stacks over S.

Consider a stack Z. If we have some sheaf F over Z, then for 
every space X ∈S and any morphism ν : X → Z we will get a
sheaf FX,ν = ν∗(F) on X . This collection of sheaves satisfies a 
variety of compatibility properties.

Now we define a sheaf F on the stack Z to be a collection of
sheaves FX,ν satisfying these compatibility properties.
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20   General definition of stacky G -modules

Suppose we fixed a site S and a system Sheaves(S) of sheaves on
this site. Let G be a group object in S.

Then we define the categoryM(G ) of stacky G-modules by
M(G ) := Sh(BG)

More generally, given a G-space Z we define the category MG (Z ) 
byMG (Z ) := Sh(G\Z).

One can think about this category as the category of G-
equivariant sheaves on the space Z .
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21       Representations of algebraic p-adic groups

Fix a p-adic field F and an algebraic group G over F.

The standard procedure in Representation theory is to consider the 
group H = G(F) of F-points of G as a topological group.       

Then one studies the category R(G ) := Repsm(H) of smooth
representations of the topological group H.

Let us note that here we work with two sites – the site S of 
algebraic varieties over F and the site L of l-spaces.
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22     l-spaces and l-groups

If Z is an l-space, then sheaves on Z are just sheaves of
complex vector spaces.

Claim. Let H be an l-group. i.e. a group object in the site L.
Then the categories R(H) = M(H) = Sh(BH) are canonically
equivalent to the category ShH(pt) of H-equivariant sheaves on
point.

Explicitly, R(H) is the category  of smooth H-modules.

If Z is an H-space in L, then the category M H (Z ) = Sh(H\Z)
is canonically equivalent to the category of H-equivariant 
sheaves on Z. .
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23      Stacky G-modules for algebraic groups

We have a functor of F–points, F : S → L .
This functor extends to stacks F : Stacks(S) → Stacks(L) . 

Using this functor we define the system Sheaves(S) of sheaves
over S by Sh(Z) := Sh(F(Z)).

Then we extend sheaves to stacks over S.          
It is easy to see that for any stack X over S we 
have Sh(X) = Sh(F(X))  

Now we define the category M(G ) of stacky G –modules   
to be the category M(G ) := Sh(BG ) = Sh(F (BG )).
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24     Stacky G-modules and G(F)-modules

We have   R(G) = R(H) =Sh(BH)        M(G) = Sh(BG) = Sh(F(BG))

It turns out that in this case the category M(G) might be 
different from the category R(G) = R(H) = Repsm(H) .
The reason is that  l-stacks BH and F(BG) might be different.

In fact, we will see that the l-stack F(BG) is a union of
several l-stacks of shape BHi , where Hi are ”pure inner forms” of
the group H (usually finite number of them).
This implies that the category M(G ) of stacky G-modules is the 
product of categories R(Hi ).
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25   Good illustration - Orthogonal group G

Let F be a p-adic field of characteristic 0, V be a vector
space over F of dimension n.
Denote by Z the algebraic variety of non-degenerate
quadratic forms on V .

Let us fix a point q ∈Z(F) and denote by G the orthogonal
group G = O(q). This is an algebraic group over F .

Let us describe the categories M(G) andR(G).  
Consider the group D = GL(V). This group transitively acts 
on the variety Z .

Going to F-points we see that Z(F) is the union of a finite number 
of open D-orbits Zi .

We denote by Zq the orbit of the point q.
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26   Categories R(G ) , M ( G ) for the group G = O(q)

Claim. (i) The category M(G ) can be realizedas the 
category of D(F )-equivariant sheaves on the l-space Z(F) ,        
M(G ) = ShD(F )(Z (F ))

(ii) The category R(G) can be realized as the category of       
D(F )-equivariant sheaves on the open orbit Zq ⊂ Z(F) ,               
R(G ) = ShD(F )(Zq).

Note that the space Z(F) is easy to describe explicitly (by some
system of equations). On the other hand, the description of one
particular orbit Zq usually is quite involved.

Groups, Groupoids, Stacks and Representation Theory.26



27    Some speculations

From this I conclude, that the description of the category M(G )
of equivariant sheaves on Z is probably much easier than that of
the category R(G) of equivariant sheaves on the orbit Zq .

I suspect that using the Langlands’ correspondence we can
classify the simple objects of M(G), i.e. simple equivariant 
sheaves on Z. However, it might be difficult to tell which of
them belong to the subcategory R(G ) (are supported on Zq).

This means that the “natural” problem of classifying irreducible 
representations of the orthogonal l-group H = O(q,F) probably   is 
not reasonable (and hence not interesting)
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28     What technical tools we can use?

Tool 1 – Inside site L

Lemma. Let E be an l-group and H ⊂ E be a closed 
subgroup. Consider the homogeneous E-space X = E/H .

Then the stacks E\X and BH = H\pt  are canonically
equivalent.

In particular, the category R(H) =ShH(pt) can be 
equivalently described as the category ShE(X).
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29      Tool 2 – F -points of stacks

Consider the functor of points F : S → L discussed above.
Let us see how to extend it to quotient stacks.

Consider a quotient stack X = G\Z, where G is a linear
algebraic group. We can try to define the l-stack F(X )
to be the l-stack F(G)\F(Z). 

This does not work since the answer depends on a 
presentation of the stack X.

However, this does work for a class of groups G that are
called acyclic.

We say that a group G ∈S is acyclic if any G torsor T is trivial.

As before, a G torsor T is a non-empty G space T such that the 
morphism γ : G × T → T × T is an isomorphism.
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30   Computation of the stack F (X )

Given a stack X = G\Z over S we can embed the group G
into some acyclic group D and consider a new presentation of
the stack X

X = D\Y , where Y = D ×G Z .

After this we define the l-stack F(X ) := F(D)\F (Y ).

It is easy to show that, up to canonical equivalence, this
construction does not depend on choices.
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31      Abundance of acyclic groups

By Hilbert 90 theorem, the group D = GL(V) discussed
above is acyclic.

Thus, we always can embed our linear algebraic group G
into an acyclic group.

This is what we actually did above for an orthogonal group G.
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