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2



◮ Main Theorem

◮ Drawing SpecZ in XQ

◮ Finite covers of XQ

◮ Periodic orbit as elliptic curve

◮ K-theory of C∗-algebra



Grothendieck-Galois πet
1 (X)

Let X be a connected scheme. Then there exists a pro-
finite group π, uniquely determined up to isomorphism,
such that the category FEtX of finite etale coverings
of X is equivalent to the category π-sets of finite sets
on which π acts continuously.
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Separable algebras

B an A-algebra, and suppose that B is finitely generated
and free as an A-module, TrB/A : B → A, A-linear map

TrB/A(b) := Tr (mb) , mb(x) = bx

φ : B → HomA(B,A) by

(φ(x))(y) = Tr(xy), ∀x, y ∈ B

B separable over A ⇐⇒ φ is an isomorphism.

Exo : B = A[x]/

x2


is not separable.
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Finite etale morphism

A morphism f : Y → X of schemes is finite étale if
there exists a covering of X by open affine subsets
Ui = SpecAi, such that for each i the open subscheme
f−1 (Ui) of Y is affine, and equal to SpecBi, where Bi

is a free separable Ai-algebra.
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Ramification

Let OK be the ring of integers of an algebraic number
field K, and p a prime ideal of OK. For a field extension
L/K we can consider the ring of integers OL (which is
the integral closure of OK in L ), and the ideal pOL of
OL. This ideal may or may not be prime, but for finite
[L : K], it has a factorization into prime ideals :

p · OL = p
e1
1 · · · pekk

where the pi are distinct prime ideals of OL. Then p is
said to ramify in L if ei > 1 for some i ; otherwise it is
unramified.
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πet
1 and Galois

Let X be a normal integral scheme, K its function
field, K̄ an algebraic closure of K, and M the com-
posite of all finite separable field extensions L of K

with L ⊂ K̄ for which X is unramified in L. Then the
fundamental group πet

1 (X) is isomorphic to the Galois
group Gal(M/K).
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Sphere S3 Scheme Spec Z

π1

S3


= {1} πet

1 (SpecZ) = {1}
Kronecker-Minkowski

H3

S3,Z


= Z H3 (SpecZ,Gm) = Q/Z

Artin-Verdier

Knot C Prime p

Mumford Mazur 19638



Knot C Prime p

Inclusion C ⊂ S3 r∗ : SpecFp ↩→ SpecZ

Knot complement X = S3 − C SpecZ\{p}

π1

S3 − C

ab
= Z πet

1 (SpecZ[1p])
ab = Z∗

p

π1 (C1) → π1

S3 − C2

ab
πet
1 (SpecFp) → πet

1 (SpecZ[1q ])
ab

Linking Number (C1, C2) p ∈ Z∗
q



Class Field Theory

L’objet de la théorie du corps de classes est
de montrer comment les extensions abéliennes
d’un corps de nombres algébriques K peuvent
être déterminées par des éléments tirés de la
connaissance de K lui-même ; ou, si l’on veut
présenter les choses en termes dialectiques, com-
ment un corps possède en soi les éléments de
son propre dépassement.

C. Chevalley (1940)

Gal(Kab : K) ≃

GL1(AK)/K×


/

GL1(AK)/K×



0
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Adele class space AK/K×, ac 1996

◮ Local to Global : K×
v ⊂ GL1(AK)/K×

Isotropy subgroup of adele classes with

a zero at the place v

◮ Explicit formulas, K×
v acting on trans-

verse space Kv


k(x, x)dx =


δ(x− λx)dx =

1

|1− λ|
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◮ Spectral realization = absorption spec-

trum



Adele class space → scaling site

(ac+cc, 2014)

NCG ⇐⇒ Topos

Xab
Q = Q×\AQ

⇓ π

XQ = Q×\AQ/Ẑ∗
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The space XQ
◮ Adelic XQ = Q×\AQ/Ẑ∗

◮ Rank one subgroups of R (and also up to ∼)

◮ Points of arithmetic site over Rmax
+

◮ Points of topos [0,∞) ⋊ N× (scaling site)



Rank one subgroups of R

Let Af be the ring of finite adeles of Q. Let Φ be the
map from


Af/Ẑ∗


× R∗

+ to subgroups of R defined by

Φ(a,λ) := λHa, Ha := {q ∈ Q | aq ∈ Ẑ}.

Then Φ is a bijection between the subset of XQ =

Q×\AQ/Ẑ∗ formed of adele classes with non-zero archi-
medean component, and the set of non-zero subgroups
of R whose elements are pairwise commensurable.
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Main Theorem (ac+cc)

Let p be a prime. Let {Frobp} ∈ πet
1 (Spec (Fp)) be the

canonical generator. The inverse image π−1(Cp) ⊂
Xab

Q of the periodic orbit Cp is canonically isomor-
phic to the mapping torus of the multiplication
by r∗ {Frobp} in the abelianized étale fundamen-
tal group πet

1 (Spec Z(p))
ab. The canonical isomor-

phism is equivariant for the action of the idele class
group.
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Cp

x∈Πq
*

p x∈Πq
*
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Periodic orbit Cp

S = {p,∞}

± pZ\ (Qp × R) /Z∗
p = XQ,S

Elements of (Qp × R) /Z∗
p are pairs (pn,λ) with p∞ = 0.

The group R∗
+ acts on XQ,S,

Generic orbit : Free action on pairs with elts ∕= 0.

Periodic orbit : (0,λ) ∼ (0, pλ) → Cp = pZ\R∗
+

(pn,λ) → (0,λ) & (pn,λ) ∼ (1, p−nλ)
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Generic orbit dense in Cp

Cp
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Several primes

Finite set of places S ∋ ∞, pj ∈ S,

XQ,S := Γ\






S

Qv



 /


S\∞
Z∗
p

where

Γ := {± p
n1
1 . . . p

nk
k | nj ∈ Z}

The group R∗
+ acts on XQ,S,

Generic orbit : Free action on x with xv ∕= 0 for all v.

Periodic orbits : xp = 0 & xv ∕= 0 → Cp = pZ\R∗
+
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Cz
-

/
-

Y2 ..

↑
&

B

Yz b · 15
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GENERIC
B2) 33, Bs ORBIT
are equivalent -
(same point
ofgenerice
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Etale Facts

— The abelianized étale fundamental group πet
1 (Spec Z(p))

ab

is canonically isomorphic to

q ∕=p Z∗

q.
— The image πet

1 (r∗) {Frobp} in the étale abeliani-
zed fundamental group πet

1 (Spec Z(p))
ab ≃ 

q ∕=p Z∗
q

is equal to p diagonally embedded in

q ∕=p Z∗

q.

The maximal abelian extension of Q in which p is unra-
mified is obtained by adjoining all roots of unity of or-
der prime to p following the local to global proof of the
Kronecker-Weber theorem. Its Galois group is


q ∕=p Z∗

q.
The action of Frobp on roots of unity is given by raising
to the power p.
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Abelian finite covers of XQ

L finite abelian extension of Q → finite cover XL
Q → XQ :

XL
Q := Q×\AQ/W, W ⊂ Ẑ∗, W = Ker


Ẑ∗ → Gal(L/Q)



πL : XL
Q → XQ

The group G = Gal(L/Q) acts transitively on each fiber,
and we say that the cover is unramified at x ∈ XQ when
G acts freely in the fiber {y,πL(y) = x}.
There exists a smallest set R of places such that

x ∈ XQ, xv ∕= 0 ∀v ∈ R ⇒ XL
Q unramified at x

20



Theorem

L →

πL : XL

Q → XQ


is a contravariant functor and

1. The finite set R of places at which the cover
ramifies is the union of the archimedean place
with the set of primes at which L ramifies.

2. Let p /∈ R then the monodromy of Cp in XL
Q is

the element of G given by the Frobenius Frobp.

3. The connected components of the inverse image
of Cp are circles labeled by the places of L over
the prime p.

21



Cp

Fπ1

Fπ2

Fπ3
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Role of η for SpecZ

Let j : η → Spec Z be the generic point, the following
sheaves on SpecZ form an exact sequence

0 → Gm → j∗Gm,η →


p
Z|p → 0,

Hq



SpecZ,


p
Z|p



 = 0 for q = 1, q > 2.

H2



SpecZ,


p
Z|p



 =


p
Q/Z

0 → H2 (SpecZ,Gm) → H2 (η,Gm,η)
r1→



p
Q/Z

→ H3 (SpecZ,Gm) → H3 (η,Gm,η) → 0.
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Spectral realization as H1(Xab
Q , η)

The idele class group acts on

H1(Xab
Q , η)

The map E : S(AQ)0 → S(CQ) comes from the trace
map in Hochschild homology using cross products

S(AQ) ⋉ Q×

0 → H0(X,Y ) → H0(X)
E→ H0(Y ) → H1(X,Y )

→ H1(X)
ρ→ H1(Y ) → H2(X,Y ) → . . .
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Geometric structure of XQ

The action of R×
+ on the space XQ is in fact the action

of the Frobenius automorphisms Frλ on the points of
the arithmetic site over Rmax

+ .

Topos + characteristic 1

— Arithmetic Site.

— Frobenius correspondences.

— Extension of scalars to Rmax
+ .
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Why semirings ?

A category C is semiadditive if it has finite products
and corpoducts, the morphism 0 → 1 is an isomorphism
(thus C has a 0), and the morphisms

γM,N : M ∨N → M ×N

are isomorphisms.
Then End(M) is naturally a semiring for any object M .

Finite semifields, characteristic 1

K = finite semifield : then K is a field or K = B :

B := {0,1}, 1+ 1 = 1
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The semifield Zmax

Lemma : Let F be a semifield of characteristic 1, then
for n ∈ N× the map Frn ∈ End(F), Frn(x) := xn ∀x ∈ F

defines an injective endomorphism of F .

Zmax := (Z∪{−∞},max,+), unique semifield with mul-
tiplicative group infinite cyclic.
multiplicative notation : Addition ∨, un ∨ um = uk, with
k = sup(n,m). Multiplication : unum = un+m.

Map N× → End(Zmax), n → Frn is isomorphism of semi-
groups. (extend to 0)
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Arithmetic Site ( N×,Zmax)

Zmax on which N× acts by n → Frn is a semiring in the
topos N× of sets with an action of N×.

The Arithmetic Site (N×,Zmax) is the topos N× endo-
wed with the structure sheaf : O := Zmax semiring in
the topos.
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Characteristic 1

The role of Fq is played by

B := {0,1}, 1+ 1 = 1

No finite extension, but

Frλ(x) = xλ automorphisms of Rmax
+ .

GalB(Rmax
+ ) = R×

+
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Points of the arithmetic site

over Rmax
+

These are defined as pairs (p, f#p ) of a point p of N×

and local morphism f#p : Op → Rmax
+ .

Theorem

The points A (Rmax
+ ) of (N×,Zmax) on Rmax

+ form the
double quotient Q×\AQ/Ẑ∗. The action of the Frobenius
Frλ of Rmax

+ corresponds to the action of the idele class
group.
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Extension of scalars to Rmax

The following holds :

Zmax⊗̂BRmax ≃ R(Z)

R(Z) = semiring of continuous, convex, piecewise affine
functions on R+ with slopes in Z ⊂ R and only finitely
many discontinuities of the derivative

These functions are endowed with the pointwise ope-
rations of functions with values in Rmax
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Points of the topos [0,∞) ⋊ N×

Theorem : The points of the topos [0,∞) ⋊ N× form
the double quotient Q×\AQ/Ẑ∗.

Corollary : One has a canonical isomorphism Θ bet-
ween the points of the topos [0,∞) ⋊ N× and A (Rmax

+ )

i.e. the points of the arithmetic site defined over Rmax
+ .
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Structure sheaf of [0,∞) ⋊ N×

This is the sheaf on [0,∞) ⋊ N× associated to convex,
piecewise affine functions with integral slopes

Same as for the localization of zeros of analytic func-
tions f(X) =


anXn in an annulus

A(r1, r2) = {z ∈ K | r1 < |z| < r2}

τ(f)(x) := max
n

{−nx− v(an)} , ∀x ∈ (− log r2,− log r1)

τ(f)(x) :=
1

2π

 2π

0
log |f(e−x+iθ)|dθ
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Periodic orbit as elliptic curve

Analogue of C/qZ

Cp = R∗
+/pZ

The degree of a divisor is a real number. For any di-
visor D in Cp, there is a corresponding Riemann-Roch
problem with solution space H0(D). The continuous di-
mension ∗ Dim(H0(D)) of this Rmax

+ -module is defined
by the limit

Dim(H0(D)) := lim
n→∞ p−ndim(H0(D)p

n
) (1)

∗. In analogy with von-Neumann’s continuous dimensions of
the theory of type II factors
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where H0(D)p
n
is a naturally defined filtration and dim(E)

denotes the topological dimension of an Rmax
+ -module.

(i) Let D ∈ Div(Cp) be a divisor with deg(D) ≥ 0. Then
the limit in (1) converges and one has

Dim(H0(D)) = deg(D).

(ii) The following Riemann-Roch formula holds

Dim(H0(D))−Dim(H0(−D)) = deg(D) ∀D ∈ Div(Cp).



Rational functions

For W ⊂ Cp open, Op(W ) is simplifiable, one lets Kp

the sheaf associated to the presheaf W → FracOp(W ).

Lemma The sections of the sheaf Kp are continuous
piecewise affine functions with slopes in Hp endowed
with max (∨) and the sum.

(x− y) ∨ (z − t) = ((x+ t) ∨ (y + z))− (y + t).
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Cartier divisors

Lemma : The sheaf CDiv(Cp) of Cartier divisors i.e.
the quotient sheaf K×

p /O×
p , is isomorphic to the sheaf

of naive divisors H → D(H) ∈ H,

∀λ, ∃V open λ ∈ V, D(µ) = 0 , ∀µ ∈ V, µ ∕= λ

Point pH associated to H ⊂ R and f section of K at pH.

Order(f) = h+ − h− ∈ H ⊂ R

h± = lim
→0±

f((1 + )H)− f(H)


.
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Divisors

Definition : A divisor is a global section of K×
p /O×

p ,
i.e. a map H → D(H) ∈ H vanishing except on finitely
many points.

Proposition : (i) The divisors Div(Cp) form an abelian
group under addition.
(ii) The condition D′(H) ≥ D(H), ∀H ∈ Cp, defines a
partial order on Div(Cp).
(iii) The degree map is additive and order preserving

deg(D) :=


D(H) ∈ R.
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Principal divisors
The sheaf Kp admits global sections :

K := K(Cp) = H0(R∗
+/pZ,Kp)

the semifield of global sections.

Principal divisors : The map which to f ∈ K× asso-
ciates the divisor

(f) :=


H

(H,OrdH(f)) ∈ Div(Cp)

is a group morphism K× → P ⊂ Div(Cp).

The subgroup P ⊂ Div(Cp) of principal divisors is contai-
ned in the kernel of the morphism deg : Div(Cp) → R :



H

OrdH(f) = 0 , ∀f ∈ K×.
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Invariant χ

For p > 2 one considers the ideal (p− 1)Hp ⊂ Hp.

0 → (p− 1)Hp → Hp
r→ Z/(p− 1)Z → 0

Lemma : For H ⊂ R, H ≃ Hp, the map χ : H → Z/(p−
1)Z, χ(µ) = r(µ/λ) where H = λHp is independent of
the choice of λ.

Theorem

The map (deg,χ) is a group isomorphism

(deg,χ) : Div(Cp)/P → R× (Z/(p− 1)Z)

where P is the subgroup of principal divisors.
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Theta Functions on Cp = R∗
+/pZ

∞

0

(1− tmw) → f+(λ) :=
∞

0
(0 ∨ (1− pmλ))

∞

1

(1− tmw−1) → f−(λ) :=
∞

1


0 ∨ (p−mλ− 1)



Theorem

Any f ∈ K(Cp) has a canonical decomposition

f(λ) =


i

Θhi,µi(λ)−


j

Θh′j,µ
′
j
(λ)− hλ+ c

where c ∈ R, (p − 1)h =


hi −


h′j and hi ≤ µi < phi,
h′j ≤ µj < ph′j.
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p-adic filtration H0(D)ρ

Definition : Let D ∈ Div(Cp) one lets

H0(D) := {f ∈ K(Cp) | D + (f) ≥ 0}

It is an Rmax-module, f, g ∈ H0(D) ⇒ f ∨ g ∈ H0(D).

Lemma : Let D ∈ Div(Cp) be a divisor, one gets a
filtration of H0(D) by Rmax-sub-modules :

H0(D)ρ := {f ∈ H0(D) | fp ≤ ρ}

using the p-adic norm.
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Real valued Dimension

DimR(H
0(D)) := lim

n→∞ p−ndimtop(H
0(D)p

n
)

where the topological dimension dimtop(X) is the num-
ber of real parameters on which solutions depend.

Riemann-Roch Theorem

(i) Let D ∈ Div(Cp) a divisor with deg(D) ≥ 0, then

lim
n→∞ p−ndimtop(H

0(D)p
n
) = deg(D)

(ii) One has the Riemann-Roch formula :

DimR(H
0(D))−DimR(H

0(−D)) = deg(D) , ∀D ∈ Div(Cp).
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Questions

◮ Are abelian covers of Spec Z suffi-

cient for the 3-dimensionality ?

◮ Explore the etale site over the sca-

ling site.
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◮ Cover of Cp viewed as a tropical el-

liptic curve, with Qp × R involved in

Riemann-Roch formula.

◮ Can one characterize the finite co-

vers as finite abelian tropical covers of

the scaling site endowed with its struc-

ture sheaf.



K-theory of C∗-algebra

The simplest meaningful computation of the K-theory
of the involved C∗-algebras is for the cross product A

associated to the union in XQ,S, S = {p, q,∞}, of the
generic orbit with the three periodic orbits Cp, Cq, C∞.
One obtains that K0(A) ≃ Z3 reflects the presence of
the three periodic orbits, while K1(A) ≃ Z2 reflects the
one-dimensionality of the periodic orbits Cp, Cq.

NCG ⇐⇒ Topos
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K-theory of C∗-algebra

S = {p, q,∞}, and the open subspace

Ω ⊂ AQ,S = Qp × Qq × R

given by the adeles which have at most one zero.

Dividing Ω by the action of the compact group G =

Z∗
p × Z∗

q gives a locally compact space Z := Ω/G which
is the union of the following 4 subspaces :

1. Z∅ =

Q∗
p × Q∗

q × R∗

/G ≃ pZ × qZ × {±1}× R∗

+.

2. Zp =

{0}× Q∗

q × R∗

/G ≃ {0}× qZ× {±1}×R∗

+.

3. Zq =

Q∗
p × {0}× R∗


/G ≃ pZ× {0}× {±1}×R∗

+.

4. Z∞ =

Q∗
p × Q∗

q × {0}

/G ≃ pZ × qZ × {0}.
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A = C0(Z) ⋉ Γ, Γ = {±pnqm | n,m ∈ Z}

The cross product C∗-algebras are, up to Morita equi-
valence, with K the compact operators,

1. A∅ = C0(Z∅) ⋉ Γ = K⊗ C0(R∗
+).

2. Ap = C0(Zp) ⋉ Γ = K⊗ C(Cp)

3. Aq = C0(Zq) ⋉ Γ = K⊗ C(Cq)

4. A∞ = C0(Z∞) ⋉ Γ = K⊗ C∗(Z/2Z).
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None of the involved C∗-algebras is unital but the C∗-
algebra B = Ap ⊕ Aq ⊕ A∞ on the right is Morita equi-
valent to the unital C∗-algebra C := C(Cp) ⊕ C(Cq) ⊕
C∗(Z/2Z). We thus get the exact hexagon of K-theory
groups

K0(A∅)
ι∗ K0(A)

ρ∗
■

■■
■■

■■
■■

K1(B)

δ1 ✉✉✉✉✉✉✉✉✉

K0(B)

δ0✉✉
✉✉
✉✉
✉✉
✉

K1(A)
ρ∗

■■■■■■■■■

K1(A∅)ι∗


(2)
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One has
— K0(A∅) = K0(C0(R∗

+)) = {0}.
— K1(A∅) = K1(C0(R∗

+)) = Z.
— K0(Ap) = K0(C(Cp)) = Z,
— K1(Ap) = K1(C(Cp)) = Z.
— K0(Aq) = K0(C(Cq)) = Z,
— K1(Aq) = K1(C(Cq)) = Z.
— K0(A∞) = K0(C

∗(Z/2Z)) = Z2,
— K1(A∞) = K1(C

∗(Z/2Z)) = {0}.
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K0(A∅) = {0}ι∗ K0(A)
ρ∗

❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

K1(B) = Z2

δ1
❦❦❦❦❦❦❦❦❦❦❦❦

K0(B) = Z4

δ0❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧

K1(A)
ρ∗

❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

K1(A∅) = Zι∗


(3)
One shows that the map δ0 : K0(B) → K1(A∅) is sur-
jective.
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