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Grothendieck-Galois 7§'(X)

Let X be a connected scheme. Then there exists a pro-
finite group =, uniquely determined up to isomorphism,
such that the category FEty of finite etale coverings
of X is equivalent to the category mw-sets of finite sets

on which 7 acts continuously.



Separable algebras

B an A-algebra, and suppose that B is finitely generated
and free as an A-module, TrB/A B — A, A-linear map

Trp/a(b) :="Tr(mp), my(z) = bz
¢ B— Homy(B,A) by

(¢(x))(y) = Tr(zy),Vz,y € B
B separable over A < ¢ is an isomorphism.

Exo : B= A[z]/ (:1:2) is not separable.



Finite etale morphism

A morphism f 'Y — X of schemes is finite étale if
there exists a covering of X by open affine subsets
U, = Spec A;, such that for each  the open subscheme
f~1(U;) of Y is affine, and equal to Spec B;, where B;
is a free separable A;-algebra.



Ramification

Let O be the ring of integers of an algebraic number
field K, and p a prime ideal of Oy . For a field extension
L/K we can consider the ring of integers Oy (which is
the integral closure of Ok in L ), and the ideal pO; of
Oy. This ideal may or may not be prime, but for finite
[L : K], it has a factorization into prime ideals :

where the p; are distinct prime ideals of O;. Then p is
said to ramify in L if ¢, > 1 for some ¢, otherwise it is

unramified.



7t and Galois

Let X be a normal integral scheme, K its function
field, K an algebraic closure of K, and M the com-
posite of all finite separable field extensions L of K
with L ¢ K for which X is unramified in L. Then the
fundamental group w‘ft(X) is isomorphic to the Galois
group Gal(M/K).



Sphere S3 Scheme Spec Z

m (S3) ={1} | n§l(Specz) = {1}
Kronecker-Minkowski

H3(S3,2) = 7| H3 (SpecZ,Gm) = Q/Z
Artin-Verdier

Knot C Prime p
Mumford Mazur 1863




Knot C Prime p

Inclusion C C S3 r* : SpecF, — SpecZ
Knot complement X = S3 - C SpecZ\{p}
b
T (S3 — C)a =7 m§t(Spec Z[%])ab = Zy

b
71 (C1) — 71 (53 -~ Cg)a m§t (SpecFp) — w§(Spec Z[%])ab

Linking Number (Cq,C5) p € Zy




Class Field Theory

L'objet de la théorie du corps de classes est
de montrer comment les extensions abéliennes
d'un corps de nombres algébriques K peuvent
étre déterminées par des éléments tirés de la
connaissance de K lui-méme; ou, Si I'on veut
présenter les choses en termes dialectiques, com-
ment un corps possede en soi les éleéments de
son propre dépassement.
C. Chevalley (1940)

Gal(K% : K) ~ (GL1(AK)/KX) / (GLl(AK)/KX>o
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Adele class space A /K”*, ac 1996

» Local to Global : K C GL1(Ag)/K*
Isotropy subgroup of adele classes with

a zero at the place v

» Explicit formulas, K acting on trans-
verse space Ky

1
1= A
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» Spectral realization = absorption spec-
trum




Adele class space — scaling site

(ac+cc, 2014)
NCG <= Topos

X§' =Q"\Ag
U

Xo = Q" \Ag/Z"
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The space X@
> Adelic Xg = Q*\Ag/Z*

» Rank one subgroups of R (and also up to ~)
» Points of arithmetic site over RT_aX

» Points of topos [0,00) x N* (scaling site)



Rank one subgroups of R

Let A/ be the ring of finite adeles of Q. Let & be the
map from (Af/Z*) x R*_ to subgroups of R defined by

®(a,\) ;= AH,, Hy:={qcQ]aqcZ}.

Then & is a bijection between the subset of X@ =
QX\A@/Z* formed of adele classes with non-zero archi-
medean component, and the set of non-zero subgroups
of R whose elements are pairwise commensurable.
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Main Theorem (ac-}cc)

Let p be a prime. Let {Frob,} € n¢(Spec (Fp)) be the
canonical generator. The inverse image w‘l(Cp) C
X@& of the periodic orbit Cp is canonically isomor-
phic to the mapping torus of the multiplication
by r*{Frob,} in the abelianized étale fundamen-
tal group w§'(Spec Z(p))ab. The canonical isomor-
phism is equivariant for the action of the idele class
group.
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Periodic orbit C)

S = {p, o0}

+p"\ (Qp x R) /Z} = X 5

Elements of (Qp x R) /Zj are pairs (p™, A\) with p> = 0.
The group RY acts on Xg g,

. Free action on pairs with elts # 0.

Periodic orbit : (0,)) ~ (0,pA) — Cp = p“\R*_

(", A) = (0,A) & (p™,A) ~ (1,p7"A)
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Generic orbit dense in ()
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Several primes

Finite set of places S > oo, p; € S,

Xg,s =T\ (H @v) / 11 z,
S

S\ oo
where
M= {:I:p?l...pzk | n; € Z}

The group R% acts on Xg g,

. Free action on = with x, #= 0 for all v.

Periodic orbits : zp = 0 & xy # 0 — Cp = p“\R¥%,_

17



B, ) %3/ %s
e q.,;w.ﬁ.*'

OW 17:0(:0‘—

< bt

18



Etale Facts

— The abelianized étale fundamental group wﬁt(Spec Z(p))“b
is canonically isomorphic to Hq#ng.

— The image 7§'(r*) {Frob,} in the étale abeliani-
zed fundamental group 7§!(Spec Z(p))ab ~ Tlysep Zi
is equal to p diagonally embedded in Hq#pz;;.

T he maximal abelian extension of Q in which p is unra-
mified is obtained by adjoining all roots of unity of or-
der prime to p following the local to global proof of the
Kronecker-Weber theorem. Its Galois group is Hq#p Zj;.
‘The action of Frob, on roots of unity is given by raising
to the power p.
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Abelian finite covers of XQ

L finite abelian extension of Q — finite cover Xé — XQ:
X§ = Q"\Ag/W, W CZ*, W =Ker(Z* - Gal(L/Q))

WL:X(éS%XQ

The group G = Gal(L/Q) acts transitively on each fiber,
and we say that the cover is unramified at x € X when
G acts freely in the fiber {y, 7l (y) = z}.

There exists a smallest set R of places such that

v € X, v # 0 Yo € R = X§ unramified at z
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T heorem

L — (wL : X(ég N X@) is a contravariant functor and

1. The finite set R of places at which the cover
ramifies is the union of the archimedean place
with the set of primes at which L ramifies.

2. Let p ¢ R then the monodromy of Cp in X{ is
the element of G given by the Frobenius Froby.

3. The connected components of the inverse image
of Cp are circles labeled by the places of L over
the prime p.
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Role of n for SpecZ

Let 5y : » — Spec Z be the generic point, the following
sheaves on SpecZ form an exact sequence

0 = Gm — 3+xGmy — [[Z|p — 0,
P
H4Y (SpeCZ,HZ|p) =0 forgq=1,q9>2.
P

H2 (SpecZ,HZ|p> =P Q/Z
p p

0 — H? (SpecZ,Gm) — H2 (1, Gmy) = PHQ/z
P

23



Spectral realization as H' (X, n)

The idele class group acts on

HY(XE,n)

The map £ : S(Ag)o — S(Cgp) comes from the trace
map in Hochschild homology using cross products

S(Ag) x Q”
0— HOX,Y) = HO(X) & HO(Y) = HY(X,Y)

S HYX) &5 HY(Y) = H3(X,Y) — ...
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Geometric structure of X@

The action of Rj_ on the space XQ is in fact the action
of the Frobenius automorphisms Fry on the points of
the arithmetic site over IR{[I“_aX.

Topos + characteristic 1

— Arithmetic Site.
— Frobenius correspondences.
— Extension of scalars to ]R{_”l]ax.
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Why semirings ?

A category C is semiadditive if it has finite products
and corpoducts, the morphism O — 1 is an isomorphism
(thus C has a 0), and the morphisms

’)/M’N:M\/N—>M><N

are isomorphisms.
Then End(M) is naturally a semiring for any object M.

Finite semifields, characteristic 1

K = finite semifield : then K is a field or K=1B :
B:={0,1}, 14+1=1
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T he semifield Zmax

Lemma : Let F be a semifield of characteristic 1, then
for n € N* the map Fr, € End(F), Frp(z) ;= 2" Vz € F
defines an injective endomorphism of F'.

Zmax .= (ZU{—o00}, max, +), unique semifield with mul-
tiplicative group infinite cyclic.

multiplicative notation : Addition v, u™V u™ = u*, with
k = sup(n,m). Multiplication : u"u™ = y?tm.

Map N* — End(Zmax), n — Fry is isomorphism of semi-
groups. (extend to 0)
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Arithmetic Site (NX. Zmax)

Zmax on which N* acts by n — Fry, is @ semiring in the
topos NX of sets with an action of N*.

The Arithmetic Site (Igl;,zmax) is the topos NX endo-

wed with the structure sheaf : O = Zmax Semiring in
the topos.
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Characteristic 1

The role of Fy is played by

No finite extension, but

Fra(z) = z* automorphisms of RT#X.

GaIB(IR{maX — Ri

3:={0,1}, 14+1=1
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Points of the arithmetic site

over RT_aX

These are defined as pairs (p, f#) of a point p of NX
and local morphism fﬁ : Op —>IR{_'"‘|”_3X.

T heorem

The points M(RT_aX) of (@,Zmax) on IR{_”I]aX form the
double quotient QX\A@/Z*. The action of the Frobenius
Fry of R_Tax corresponds to the action of the idele class

group.

30



Extension of scalars to Rmax

The following holds :

Zmax@pRmax ~ R(Z)

R(Z) = semiring of continuous, convex, piecewise affine
functions on Ry with slopes in Z C R and only finitely
many discontinuities of the derivative

These functions are endowed with the pointwise ope-
rations of functions with values in Rmax
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Points of the topos [0,00) x N*

Theorem : The points of the topos [0,c0) x N* form
the double quotient Q*\Ag/Z*.

Corollary : One has a canonical isomorphism © bet-
ween the points of the topos [0,00) x N* and %(R[‘ﬂ_ax)

i.e. the points of the arithmetic site defined over R_Tax.
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Structure sheaf of [0,0c0) x N*

This is the sheaf on [0,00) x N* associated to convex,
piecewise affine functions with integral slopes

Same as for the localization of zeros of analytic func-
tions f(X) = > anpX™ in an annulus

A(ri,mo) ={z€ K| r1 <|z| <ro}
7(f)(x) = mgx{—n:v —v(an)}, Yz e (—logry,—logry)

(@) = o [ og|f(e ) do
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Periodic orbit as elliptic curve

Analogue of C/q”
Cp = RY /p”

The degree of a divisor is a real number. For any di-
visor D in Cp, there is a corresponding Riemann-Roch
problem with solution space HO(D). The continuous di-
mension * Dim(H?(D)) of this R@*-module is defined
by the Iimit

DIm(HO(D)) := lim p "dim(H9(D)?") (1)

n—oo

x. In analogy with von-Neumann’'s continuous dimensions of
the theory of type II factors
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where HO(D)P" is a naturally defined filtration and dim(&)

denotes the topological dimension of an R_Tax-module.

(i) Let D € Div(Cp) be a divisor with deg(D) > 0. Then
the limit in (1) converges and one has

DIim(H%(D)) = deg(D).
(73) The following Riemann-Roch formula holds

DIim(H°(D))-Dim(H%(=D)) = deg(D) VD € Div(Cp).



Rational functions

For W C Cp open, Op(W) is simplifiable, one lets Ky
the sheaf associated to the presheaf W +— Frac Op(W).

Lemma The sections of the sheaf K, are continuous
piecewise affine functions with slopes in H, endowed
with max (V) and the sum.

-y VE-t)=(z+t)V(y+2))—(y+1).
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Cartier divisors

Lemma : The sheaf CDiv(Cy) of Cartier divisors i.e.
the quotient sheaf ICE;/OX, is isomorphic to the sheaf
of naive divisors H — D(H) € H,

VA, AV open A€V, D(u) =0, YVueV, u*A

Point pg associated to H C R and f section of K at pg.
Order(f) =hy —h_€ HCR
1 H)— f(H
he = tim T Q) — f(H)

e—0+ €
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DIVISOrs

Definition : A divisor is a global section of K} /OF,
i.e. a map H — D(H) € H vanishing except on finitely
many points.

Proposition : (i) The divisors Div(Cp) form an abelian
group under addition.

(i) The condition D'(H) > D(H), VH € Cp, defines a
partial order on Div(Cyp).

(735) The degree map is additive and order preserving

deg(D) := > D(H) € R.
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Principal divisors

The sheaf Kp admits global sections :
K :=K(Cp) = HO(RY_/p”, Kp)
the semifield of global sections.

Principal divisors : The map which to f € K* asso-
ciates the divisor

(f) =) (H,Ordg(f)) € Div(Cy)
H

is @ group morphism KX — P C Div(Cp).

The subgroup P C Div(Cy) of principal divisors is contai-
ned in the kernel of the morphism deg : Div(Cp) — R :

S Ordy(f) =0, Vfek*.
H
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Invariant y

For p > 2 one considers the ideal (p — 1)Hp C Hp.
0—=(p—1)Hp = Hp 5 Z/(p—1)Z =0

Lemma : For HCR, H~ Hp, themap x: H —-Z/(p —
1)Z, x(n) = r(u/X) where H = AHj, is independent of
the choice of .

T heorem

The map (deg, x) is a group isomorphism

(deg,x) : Div(Cp) /P = R x (Z/(p — 1)Z)
where P is the subgroup of principal divisors.
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Theta Functions on C, = R, /p”

ﬁ(1 — M) = f (M) i= S (0V (1 —p™A))
0] 0

0@

ﬁ(1 — " s ) =Y (o vV (p ™\ — 1))
1

1
T heorem

Any f € K(Cp) has a canonical decomposition

fA) = Z Op, 1, (A) — Z @h;,M;(A) —hx+c
i J

where ¢ € R, (p —1)h = Y h; — X k% and h; < p; < phy,
h;guj<ph;.
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p-adic filtration H°(D)”

Definition : Let D € Div(Cp) one lets

HO(D) :={f € K(Cp) | D+ (f) > 0}
It is an Rmax-module, f,g € HO(D) = fVv g € HO(D).

Lemma : Let D € Div(Cp) be a divisor, one gets a
filtration of HO(D) by Rmax-sub-modules :

HO(D)P := {f € HO(D) | || fllp < p}

using the p-adic norm.
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Real valued Dimension

Dimg(H%(D)) := lim p~"dimop(HO(D)P")

n—oo

where the topological dimension dimep(X) is the num-
ber of real parameters on which solutions depend.

Riemann-Roch Theorem

(i) Let D € Div(Cp) a divisor with deg(D) > 0, then
lim_ p~"dimiop(HO(D)P") = deg(D)

(77) One has the Riemann-Roch formula :
Dimg(HY(D))—Dimg(H°(—D)) = deg(D), VD € Div(Cp).
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Questions

» Are abelian covers of Spec Z suffi-

cient for the 3-dimensionality 7

» EXplore the etale site over the sca-

ling site.
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» Cover of () viewed as a tropical el-
liptic curve, with Qp X R involved in

Riemann-Roch formula.

» Can one characterize the finite co-
vers as finite abelian tropical covers of

the scaling site endowed with its struc-

ture sheatf.



K-theory of C'*-algebra

The simplest meaningful computation of the K-theory
of the involved C*-algebras is for the cross product A
associated to the union in Xg g, S = {p,q,00}, of the
generic orbit with the three periodic orbits Cp, Cq, Co.
One obtains that Kg(A) ~ Z3 reflects the presence of
the three periodic orbits, while K1(A) ~ 72 reflects the
one-dimensionality of the periodic orbits Cp, Cj.

NCG <= Topos

44



K-theory of C*-algebra

S = {p,q,}, and the open subspace

given by the adeles which have at most one zero.

Dividing €2 by the action of the compact group G =
Z]’; X Z;; gives a locally compact space Z := Q2/G which
is the union of the following 4 subspaces :

1. Zy = (Q) x Q; x R*) /G ~ pL x ¢F x {£1} x RY,..
2. Zp= ({0} x @} x R¥) /G ~ {0} x ¢ x {£1} x R¥..
3. Zg= (@ x {0} x R*) /G ~ pZ x {0} x {£1} x R¥..

A, oo = (Q;‘;x@j‘l‘ X {O}) /G ~ p% x ¢% x {0}. .



A=Co(Z)x I, I ={£p"¢" | n,m € Z}

The cross product C*-algebras are, up to Morita equi-
valence, with I the compact operators,

1.
3.

A(Z) = CO(Z(Z)) X Im=K& Co(Rf'_).
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None of the involved C*-algebras is unital but the C*-
algebra B = Ay @ Aq © A ON the right is Morita equi-
valent to the unital C*-algebra C = C(Cp) & C(Cy) ®
C*(Z/2%Z). We thus get the exact hexagon of K-theory
groups

éfo(f“@)bi KO(A)\pt
K1(B) Ko(B) (2)

K1(A) :,K1(Ap)
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One has
— Ko(4p) = Ko(Co(RY)) = {0}.
— Ki1(Ap) = K1(Co(RY)) = Z.
— Ko(4p) = Ko(C(Cp)) = Z,
— K1(Ap) = K1(C(Cp)) = Z.
— Ko(Aq) = Ko(C(Cy)) = Z,
— K1(Ag) = K1(C(Cy)) = Z.
— Ko(Ax) = Ko(C*(Z/22)) = Z7,
— K1(Ax) = K1(C*(Z/22)) = {0}.
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1Ko(z4(z)) = {0}—Kp(A)

o e
K1(B) =72 Ko(B) =274
T —5

Ki1(A)— K1(Ap) = Z

(3)
One shows that the map g : Ko(B) — K1(Ap) is sur-
jective.
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