Primes, Knots and the adele class space

Alain Connes (jt work with C. Consani)

Toposes in Mondovi September 2024

\blacktriangleright Etale site of Spec $\mathbb Z$

▶ Analogy Knots and Primes

▶ Class Field theory

▶ Adele class space

▶ The arithmetic and scaling sites

\blacktriangleright Drawing Spec $\mathbb Z$ in $X_{\mathbb Q}$

\blacktriangleright Finite covers of $X_{\mathbb{O}}$

▶ Periodic orbit as elliptic curve

◮ *K*-theory of *C*∗-algebra

G rothendieck-Galois $\pi_1^{et}(X)$

Let *X* be a connected scheme. Then there exists a profinite group π , uniquely determined up to isomorphism, such that the category FEt_X of finite etale coverings of X is equivalent to the category π -sets of finite sets on which π acts continuously.

Separable algebras

B an *A*-algebra, and suppose that *B* is finitely generated and free as an A-module, $Tr_{B/A}: B \to A$, A-linear map

$$
\operatorname{Tr}_{B/A}(b) := \operatorname{Tr}(m_b), \quad m_b(x) = bx
$$

 $\phi: B \to \text{Hom}_A(B, A)$ by

$$
(\phi(x))(y) = \mathsf{Tr}(xy), \forall x, y \in B
$$

B separable over A \iff ϕ is an isomorphism.

Exo : $B = A[x]/(x^2)$ is not separable.

Finite etale morphism

A morphism $f: Y \to X$ of schemes is finite étale if there exists a covering of *X* by open affine subsets $U_i = \text{Spec } A_i$, such that for each *i* the open subscheme $f^{-1}(U_i)$ of *Y* is affine, and equal to Spec B_i , where B_i is a free separable *Ai*-algebra.

Ramification

Let \mathcal{O}_K be the ring of integers of an algebraic number field K, and p a prime ideal of \mathcal{O}_K . For a field extension L/K we can consider the ring of integers \mathcal{O}_L (which is the integral closure of \mathcal{O}_K in L), and the ideal $p\mathcal{O}_L$ of \mathcal{O}_L . This ideal may or may not be prime, but for finite [*L* : *K*], it has a factorization into prime ideals :

$$
\mathfrak{p}\cdot \mathcal{O}_L=\mathfrak{p}_1^{e_1}\cdots \mathfrak{p}_k^{e_k}
$$

where the p_i are distinct prime ideals of \mathcal{O}_L . Then p is said to ramify in *L* if $e_i > 1$ for some *i*; otherwise it is unramified.

Let *X* be a normal integral scheme, *K* its function field, \bar{K} an algebraic closure of K , and M the composite of all finite separable field extensions *L* of *K* with $L \subset \overline{K}$ for which X is unramified in L. Then the fundamental group $\pi^{et}_1(X)$ is isomorphic to the Galois group Gal(*M/K*).

Class Field Theory

L'objet de la théorie du corps de classes est de montrer comment les extensions abéliennes d'un corps de nombres algébriques *K* peuvent être déterminées par des éléments tirés de la connaissance de *K* lui-même ; ou, si l'on veut présenter les choses en termes dialectiques, comment un corps possède en soi les éléments de son propre dépassement.

C. Chevalley (1940)

 $\mathsf{Gal}(K^{ab}:K)\simeq \left(\mathsf{GL}_1(\mathbb{A}_K)/K^\times\right)/$ $\left(\mathsf{GL}_1(\mathbb{A}_K)/K^\times\right)_0$ Adele class space A*K/K*× , ac 1996

 \blacktriangleright Local to Global : $K_v^{\times} \subset \mathsf{GL}_1(\mathbb{A}_K)/K^{\times}$ Isotropy subgroup of adele classes with a zero at the place *v*

 \blacktriangleright Explicit formulas, K_v^\times acting on transverse space K_v

$$
\int k(x,x)dx = \int \delta(x-\lambda x)dx = \frac{1}{|1-\lambda|}
$$

\blacktriangleright Spectral realization $=$ absorption spectrum

Adele class space \rightarrow scaling site $(ac+cc, 2014)$ $NCG \iff Topos$

11

The space $X_{\mathbb{Q}}$

$$
\blacktriangleright \text{ Adelic } X_{\mathbb{Q}} = \mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}} / \hat{\mathbb{Z}}^{*}
$$

- ► Rank one subgroups of R (and also up to \sim)
- \blacktriangleright Points of arithmetic site over $\mathbb{R}^{\text{max}}_+$
- ▶ Points of topos $[0, \infty) \rtimes \mathbb{N}^\times$ (scaling site)

Rank one subgroups of $\mathbb R$

Let A^f be the ring of finite adeles of Q. Let Φ be the map from $(A^f/\hat{\mathbb{Z}}^*)$ $x \mathbb{R}^*_+$ to subgroups of $\mathbb R$ defined by

 $\Phi(a, \lambda) := \lambda H_a, \quad H_a := \{q \in \mathbb{Q} \mid aq \in \mathbb{Z}\}.$

Then Φ is a bijection between the subset of $X_{\mathbb{Q}} =$ ^Q×**AQ*/*Zˆ[∗] formed of adele classes with non-zero archimedean component, and the set of non-zero subgroups of $\mathbb R$ whose elements are pairwise commensurable.

Main Theorem (ac+cc)

Let *p* be a prime. Let $\{\text{Frob}_p\} \in \pi_1^{et}(\text{Spec } (\mathbb{F}_p))$ be the canonical generator. The inverse image $\pi^{-1}(C_p) \subset$ $X^{ab}_{\mathbb Q}$ of the periodic orbit C_p is canonically isomorphic to the mapping torus of the multiplication by *r*[∗] *{*Frob*p}* in the abelianized étale fundamen- ${\sf tal}$ group $\pi_1^{et}({\sf Spec}\ {\mathbb Z}_{(p)})^{ab}.$ The canonical isomorphism is equivariant for the action of the idele class group.

Periodic orbit *Cp*

 $S = \{p, \infty\}$

$$
\pm \, p^{\mathbb{Z}} \backslash \left(\mathbb{Q}_p \times \mathbb{R} \right) / \mathbb{Z}_p^* = X_{\mathbb{Q},S}
$$

Elements of $(\mathbb{Q}_p \times \mathbb{R}) / \mathbb{Z}_p^*$ are pairs (p^n, λ) with $p^{\infty} = 0$. The group \mathbb{R}^*_+ acts on $X_{\mathbb{Q},S}$,

Generic orbit : Free action on pairs with elts $\neq 0$.

Periodic orbit :
$$
(0, \lambda) \sim (0, p\lambda) \rightarrow C_p = p^{\mathbb{Z}} \backslash \mathbb{R}^*_+
$$

\n $(p^n, \lambda) \rightarrow (0, \lambda) \& (p^n, \lambda) \sim (1, p^{-n}\lambda)$

Generic orbit dense in *Cp*

Several primes

Finite set of places $S \ni \infty$, $p_j \in S$,

$$
X_{\mathbb{Q},S}:=\operatorname{TV}\left(\prod_{S}\mathbb{Q}_v\right)/\prod_{S\backslash\infty}\mathbb{Z}_p^*
$$

where

$$
\Gamma := \{ \pm p_1^{n_1} \dots p_k^{n_k} \mid n_j \in \mathbb{Z} \}
$$

The group \mathbb{R}_+^* acts on $X_{\mathbb{Q},S}$,

Generic orbit : Free action on x with $x_v \neq 0$ for all v.

Periodic orbits:
$$
x_p = 0
$$
 & $x_v \neq 0 \rightarrow C_p = p^{\mathbb{Z}} \backslash \mathbb{R}^*_+$

17

Etale Facts

- $\hspace{0.1cm}$ The abelianized étale fundamental group $\pi^{et}_{1}(\mathrm{Spec}\ \mathbb{Z}_{(p)})^{ab}$ is canonically isomorphic to $\prod_{q\neq p} \mathbb{Z}_q^*$.
- \rightarrow The image $\pi^{et}_1(r^*)$ {Frob_p} in the étale abelianized fundamental group $\pi_1^{et}(\operatorname{Spec} \ \mathbb{Z}_{(p)})^{ab} \simeq \Pi_{q \neq p} \, \mathbb{Z}_q^*$ is equal to p diagonally embedded in $\prod_{q\neq p}\mathbb{Z}_q^*.$

The maximal abelian extension of Q in which *p* is unramified is obtained by adjoining all roots of unity of order prime to *p* following the local to global proof of the Kronecker-Weber theorem. Its Galois group is $\prod_{q\neq p}\mathbb{Z}_q^*$. The action of Frob*p* on roots of unity is given by raising to the power *p*.

Abelian finite covers of $X_{\mathbb{O}}$

 L finite abelian extension of $\mathbb{Q} \to$ finite cover $X^L_{\mathbb{Q}} \to X_{\mathbb{Q}}$: $X^L_{\mathbb{Q}}:=\mathbb{Q}^\times\backslash \mathbb{A}_{\mathbb{Q}}/W, \ \ W\subset \widehat{\mathbb{Z}}^*, \ W=\mathsf{Ker}\left(\widehat{\mathbb{Z}}^*\to \mathsf{Gal}(L/\mathbb{Q})\right)$ $\pi^L: X_{\mathbb Q}^L \to X_{\mathbb Q}$

The group $G = \text{Gal}(L/\mathbb{Q})$ acts transitively on each fiber, and we say that the cover is unramified at $x \in X_{\mathbb{Q}}$ when *G* acts freely in the fiber $\{y, \pi^L(y) = x\}.$

There exists a smallest set *R* of places such that

$$
x \in X_{\mathbb{Q}}, \ x_v \neq 0 \ \forall v \in R \Rightarrow X_{\mathbb{Q}}^L \text{ unramified at } x
$$

Theorem

 $L \to \left(\pi^L : X^L_{\mathbb{Q}} \to X_{\mathbb{Q}} \right)$ $\overline{}$ is a contravariant functor and

- 1. The finite set *R* of places at which the cover ramifies is the union of the archimedean place with the set of primes at which *L* ramifies.
- 2. Let $p \notin R$ then the monodromy of C_p in $X^L_{\mathbb Q}$ is the element of *G* given by the Frobenius Frob*p*.
- 3. The connected components of the inverse image of *Cp* are circles labeled by the places of *L* over the prime *p*.

 $\overline{}$

22

Role of η for Spec $\mathbb Z$

Let $j : \eta \to \text{Spec } \mathbb{Z}$ be the generic point, the following sheaves on $Spec\ Z$ form an exact sequence

$$
0 \to \mathbf{G}_m \to j_*\mathbf{G}_{m,\eta} \to \coprod_p \mathbb{Z}|p \to 0,
$$

$$
Hq \left(\operatorname{Spec} \mathbb{Z}, \coprod_{p} \mathbb{Z}|p \right) = 0 \quad \text{for } q = 1, q > 2.
$$

$$
H^2\left(\operatorname{Spec}\mathbb{Z},\coprod_p \mathbb{Z}|p\right) = \bigoplus_p \mathbb{Q}/\mathbb{Z}
$$

$$
0 \to H^{2}(\text{Spec } \mathbb{Z}, \mathbb{G}_{m}) \to H^{2}(\eta, \mathbb{G}_{m, \eta}) \overset{r_1}{\to} \bigoplus_{p} \mathbb{Q}/\mathbb{Z}
$$

$$
\to H^{3}(\text{Spec } \mathbb{Z}, \mathbb{G}_{m}) \to H^{3}(\eta, \mathbb{G}_{m, \eta}) \to 0.
$$

Spectral realization as $H^1(X_{\mathbb Q}^{ab}, \eta)$

The idele class group acts on

$H^{\mathbf{1}}(X_{\mathbb{Q}}^{ab},\eta)$

The map $\mathcal{E} : \mathcal{S}(\mathbb{A}_{\mathbb{Q}})_0 \to \mathcal{S}(C_{\mathbb{Q}})$ comes from the trace map in Hochschild homology using cross products

 $S(A_{\mathbb{Q}}) \ltimes \mathbb{Q}^{\times}$

$$
0 \to H^0(X, Y) \to H^0(X) \xrightarrow{\mathcal{E}} H^0(Y) \to H^1(X, Y)
$$

$$
\to H^1(X) \xrightarrow{\rho} H^1(Y) \to H^2(X, Y) \to \dots
$$

Geometric structure of $X_{\mathbb{O}}$

The action of \mathbb{R}_+^\times on the space $X_\mathbb{Q}$ is in fact the action of the Frobenius automorphisms Fr_{λ} on the points of the arithmetic site over $\mathbb{R}^{\text{max}}_+.$

$Topos + characteristic 1$

- Arithmetic Site.
- Frobenius correspondences.
- Extension of scalars to \mathbb{R}^{max}_{+} .

Why semirings ?

A category *C* is *semiadditive* if it has finite products and corpoducts, the morphism $0 \rightarrow 1$ is an isomorphism (thus *C* has a 0), and the morphisms

$$
\gamma_{M,N}:M\vee N\to M\times N
$$

are isomorphisms.

Then End(*M*) is naturally a semiring for any object *M*.

Finite semifields, characteristic 1

 $\mathbb{K} =$ finite semifield : then \mathbb{K} is a field or $\mathbb{K} = \mathbb{B}$:

$$
\mathbb{B} := \{0, 1\}, \quad 1 + 1 = 1
$$

The semifield \mathbb{Z}_{max}

Lemma : Let F be a semifield of characteristic 1, then for $n \in \mathbb{N}^\times$ the map $\mathsf{Fr}_n \in \mathsf{End}(\mathbb{F})$, $\mathsf{Fr}_n(x) := x^n \ \forall x \in F$ defines an injective endomorphism of *F*.

Zmax := (Z∪*{*−∞*},* max*,* +), unique semifield with multiplicative group infinite cyclic. m ultiplicative notation : Addition \vee , $u^n \vee u^m = u^k$, with $k = \sup(n, m)$ *. Multiplication* : $u^n u^m = u^{n+m}$ *.*

Map $\mathbb{N}^{\times} \to \text{End}(\mathbb{Z}_{\text{max}})$, $n \mapsto \text{Fr}_n$ is isomorphism of semigroups. (extend to 0)

Arithmetic Site (N^x, Z_{max})

 \mathbb{Z}_{max} on which \mathbb{N}^{\times} acts by $n \mapsto \text{Fr}_n$ is a semiring in the topos \mathbb{N}^\times of sets with an action of $\mathbb{N}^\times.$

The *Arithmetic Site* ($\mathbb{N}^{\times}, \mathbb{Z}_{\text{max}}$) is the topos \mathbb{N}^{\times} endowed with the *structure sheaf* : \mathcal{O} := \mathbb{Z}_{max} semiring in the topos.

Characteristic 1

The role of
$$
\mathbb{F}_q
$$
 is played by
\n $\mathbb{B} := \{0, 1\}, \quad 1 + 1 = 1$

No finite extension, but

 $Fr_\lambda(x)=x^\lambda$ automorphisms of \mathbb{R}^{\max}_+ .

$$
\text{Gal}_{\mathbb{B}}(\mathbb{R}_{+}^{\text{max}})=\mathbb{R}_{+}^{\times}
$$

Points of the arithmetic site

over $\mathbb{R}^{\text{max}}_+$

These are defined as pairs $(p, f_p^{\#})$ of a point p of $\widehat{\mathbb{N}^{\times}}$ and local morphism $f_p^{\#}: \mathcal{O}_p \to \mathbb{R}^{\text{max}}_+$.

Theorem

The points $\mathscr{A}(\mathbb{R}^{max}_+)$ of $(\widehat{\mathbb{N}^{\times}}, \mathbb{Z}_{max})$ on \mathbb{R}^{max}_+ form the double quotient $\mathbb{Q}^{\times}\backslash\mathbb{A}_{\mathbb{O}}/\mathbb{Z}^*$. The action of the Frobenius Fr_{λ} of \mathbb{R}^{max}_{+} corresponds to the action of the idele class group.

Extension of scalars to \mathbb{R}_{max}

The following holds :

 $\mathbb{Z}_{\max}\widehat{\otimes}_{\mathbb{R}}\mathbb{R}$ max $\simeq \mathcal{R}(\mathbb{Z})$

 $R(\mathbb{Z})$ = semiring of continuous, convex, piecewise affine functions on \mathbb{R}_+ with slopes in $\mathbb{Z} \subset \mathbb{R}$ and only finitely many discontinuities of the derivative

These functions are endowed with the pointwise operations of functions with values in \mathbb{R}_{max}

Points of the topos $[0, \infty) \rtimes \mathbb{N}^\times$

Theorem : The points of the topos $[0, \infty) \rtimes \mathbb{N}^{\times}$ form the double quotient $\mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}}/\mathbb{Z}^{*}$.

Corollary : One has a canonical isomorphism Θ between the points of the topos $[0,\infty)\rtimes\mathbb{N}^\times$ and $\mathscr{A}(\mathbb{R}^{\text{max}}_+)$ *i.e.* the points of the arithmetic site defined over $\mathbb{R}^{\text{max}}_+$.

Structure sheaf of $[0, \infty) \rtimes \mathbb{N}^{\times}$

This is the sheaf on $[0,\infty) \rtimes \mathbb{N}^\times$ associated to convex, piecewise affine functions with integral slopes

Same as for the localization of zeros of analytic functions $f(X) = \sum a_n X^n$ in an annulus

$$
A(r_1, r_2) = \{ z \in K \mid r_1 < |z| < r_2 \}
$$

 $\tau(f)(x) := \max_{n} \{-nx - v(a_n)\}, \forall x \in (-\log r_2, -\log r_1)$

$$
\tau(f)(x) := \frac{1}{2\pi} \int_0^{2\pi} \log|f(e^{-x+i\theta})| d\theta
$$

The degree of a divisor is a real number. For any divisor *D* in *Cp*, there is a corresponding Riemann-Roch problem with solution space $H^0(D)$. The continuous dimension * Dim $(H^0(D))$ of this $\mathbb{R}^{\textsf{max}}_+$ -module is defined by the limit

$$
\text{Dim}(H^0(D)) := \lim_{n \to \infty} p^{-n} \text{dim}(H^0(D)^{p^n}) \qquad (1)
$$

∗. In analogy with von-Neumann's continuous dimensions of the theory of type II factors

where $H^0(D)^{p^n}$ is a naturally defined filtration and dim(\mathcal{E}) denotes the topological dimension of an $\mathbb{R}^{\text{max}}_+$ -module.

(*i*) Let $D \in Div(C_p)$ be a divisor with $deg(D) \geq 0$. Then the limit in [\(1\)](#page-37-1) converges and one has

 $Dim(H^{0}(D)) = deg(D).$

(*ii*) The following Riemann-Roch formula holds Dim($H^0(D)$)−Dim($H^0(-D)$) = deg(*D*) $\forall D \in \text{Div}(C_p)$.

Rational functions

For $W \subset C_p$ open, $\mathcal{O}_p(W)$ is simplifiable, one lets \mathcal{K}_p the sheaf associated to the presheaf $W \mapsto \text{Frac}\,\mathcal{O}_p(W)$.

Lemma The sections of the sheaf K_p are continuous piecewise affine functions with slopes in *Hp* endowed with max (∨) and the sum.

$$
(x - y) \vee (z - t) = ((x + t) \vee (y + z)) - (y + t).
$$

Cartier divisors

Lemma : The sheaf CDiv(*Cp*) of Cartier divisors *i.e.* the quotient sheaf $\mathcal{K}_p^\times/\mathcal{O}_p^\times$, is isomorphic to the sheaf of naive divisors $H \mapsto D(H) \in H$,

 $\forall \lambda, \exists V \text{ open } \lambda \in V, D(\mu) = 0, \forall \mu \in V, \mu \neq \lambda$

Point \mathfrak{p}_H associated to $H \subset \mathbb{R}$ and f section of K at \mathfrak{p}_H .

$$
\text{Order}(f) = h_+ - h_- \in H \subset \mathbb{R}
$$
\n
$$
h_{\pm} = \lim_{\epsilon \to 0^{\pm}} \frac{f((1 + \epsilon)H) - f(H)}{\epsilon}
$$

.

36

Divisors

Definition . A divisor is a global section of $\mathcal{K}_p^{\times}/\mathcal{O}_p^{\times}$, *i.e.* a map $H \to D(H) \in H$ vanishing except on finitely many points.

Proposition : (*i*) The divisors $Div(C_p)$ form an abelian group under addition.

 (iii) The condition $D'(H) \ge D(H)$, $\forall H \in C_p$, defines a partial order on Div(*Cp*).

(*iii*) The degree map is additive and order preserving

$$
\deg(D) := \sum D(H) \in \mathbb{R}.
$$

Principal divisors

The sheaf K_p admits global sections :

$$
\mathcal{K} := \mathcal{K}(C_p) = H^0(\mathbb{R}^*_{+}/p^{\mathbb{Z}}, \mathcal{K}_p)
$$

the semifield of global sections.

Principal divisors : The map which to $f \in K^{\times}$ associates the divisor

$$
(f) := \sum_{H} (H, \text{Ord}_{H}(f)) \in \text{Div}(C_p)
$$

is a group morphism $K^{\times} \to \mathcal{P} \subset \text{Div}(C_p)$.

The subgroup $\mathcal{P} \subset \text{Div}(C_p)$ of principal divisors is **contai**ned in the kernel of the morphism deg : $Div(C_p) \rightarrow \mathbb{R}$:

$$
\sum_{H} \text{Ord}_{H}(f) = 0, \ \forall f \in \mathcal{K}^{\times}.
$$

38

Invariant χ

For $p > 2$ one considers the ideal $(p-1)H_p \subset H_p$.

$$
0 \to (p-1)H_p \to H_p \overset{r}{\to} \mathbb{Z}/(p-1)\mathbb{Z} \to 0
$$

Lemma : For $H \subset \mathbb{R}$, $H \simeq H_p$, the map $\chi : H \to \mathbb{Z}/(p - 1)$ 1)Z, $\chi(\mu) = r(\mu/\lambda)$ where $H = \lambda H_p$ is independent of the choice of λ .

heorem

The map (deg, χ) is a **group isomorphism**

 $(\text{deg}, \chi) : \text{Div}(C_p)/\mathcal{P} \to \mathbb{R} \times (\mathbb{Z}/(p-1)\mathbb{Z})$

where P is the subgroup of principal divisors.

Theta Functions on $C_p = \mathbb{R}_+^\ast/p^\mathbb{Z}$

$$
\prod_{0}^{\infty}(1-t^mw)\rightarrow f_{+}(\lambda):=\sum_{0}^{\infty}(0\vee(1-p^m\lambda))
$$

$$
\prod_{1}^{\infty} (1 - t^{m} w^{-1}) \to f_{-}(\lambda) := \sum_{1}^{\infty} (0 \vee (p^{-m}\lambda - 1))
$$

Any $f \in \mathcal{K}(C_p)$ has a canonical decomposition

$$
f(\lambda) = \sum_{i} \Theta_{h_i, \mu_i}(\lambda) - \sum_{j} \Theta_{h'_j, \mu'_j}(\lambda) - h\lambda + c
$$

where $c \in \mathbb{R}, (p-1)h = \sum h_i - \sum h'_j$ and $h_i \leq \mu_i < ph_i$ $h'_j \leq \mu_j < p h'_j.$

p-adic filtration $H^0(D)^\rho$

Definition : Let $D \in Div(C_p)$ one lets $H^{0}(D) := \{ f \in \mathcal{K}(C_p) \mid D + (f) \geq 0 \}$ It is an \mathbb{R}_{max} -module, $f, g \in H^0(D) \Rightarrow f \vee g \in H^0(D)$.

Lemma : Let $D \in Div(C_p)$ be a divisor, one gets a filtration of $H^0(D)$ by \mathbb{R}_{max} -sub-modules :

$$
H^{0}(D)^{\rho} := \{ f \in H^{0}(D) \mid ||f||_{p} \le \rho \}
$$

using the *p*-adic norm.

Real valued Dimension

$$
\text{Dim}_{\mathbb{R}}(H^0(D)) := \lim_{n \to \infty} p^{-n} \text{dim}_{\text{top}}(H^0(D)^{p^n})
$$

where the *topological dimension* dim_{top} (X) is the number of real parameters on which solutions depend.

Riemann-Roch Theorem

(*i*) Let $D \in Div(C_p)$ a divisor with $deg(D) \geq 0$, then lim $\lim_{n\to\infty}p^{-n}$ dim_{top} $(H^0(D)^{p^n})$ $)=$ deg (D) (*ii*) One has the Riemann-Roch formula : $\text{Dim}_{\mathbb{R}}(H^0(D))-\text{Dim}_{\mathbb{R}}(H^0(-D))=\text{deg}(D), \ \forall D \in \text{Div}(C_p).$

 \blacktriangleright Are abelian covers of Spec $\mathbb Z$ sufficient for the 3-dimensionality ?

▶ Explore the etale site over the scaling site.

 \blacktriangleright Cover of C_p viewed as a tropical elliptic curve, with $\mathbb{Q}_p \times \mathbb{R}$ involved in Riemann-Roch formula.

▶ Can one characterize the finite covers as finite abelian tropical covers of the scaling site endowed with its structure sheaf.

K-theory of *C*∗-algebra

The simplest meaningful computation of the *K*-theory of the involved *C*∗-algebras is for the cross product *A* associated to the union in $X_{\mathbb{Q},S}$, $S = \{p,q,\infty\}$, of the generic orbit with the three periodic orbits C_p, C_q, C_∞ . One obtains that $K_0(A) \simeq \mathbb{Z}^3$ reflects the presence of the three periodic orbits, while $K_1(A) \simeq \mathbb{Z}^2$ reflects the one-dimensionality of the periodic orbits *Cp, Cq*.

$NCG \iff Topos$

K-theory of *C*∗-algebra

 $S = \{p, q, \infty\}$, and the open subspace

$$
\Omega \subset \mathbb{A}_{\mathbb{Q},S} = \mathbb{Q}_p \times \mathbb{Q}_q \times \mathbb{R}
$$

given by the adeles which have at most one zero.

Dividing Ω by the action of the compact group $G =$ $\mathbb{Z}_p^* \times \mathbb{Z}_q^*$ gives a locally compact space $Z := \mathsf{\Omega}/G$ which is the union of the following 4 subspaces :

\n- 1.
$$
Z_{\emptyset} = (\mathbb{Q}_p^* \times \mathbb{Q}_q^* \times \mathbb{R}^*) / G \simeq p^{\mathbb{Z}} \times q^{\mathbb{Z}} \times \{\pm 1\} \times \mathbb{R}_+^*
$$
.
\n- 2. $Z_p = (\{0\} \times \mathbb{Q}_q^* \times \mathbb{R}^*) / G \simeq \{0\} \times q^{\mathbb{Z}} \times \{\pm 1\} \times \mathbb{R}_+^*$.
\n- 3. $Z_q = (\mathbb{Q}_p^* \times \{0\} \times \mathbb{R}^*) / G \simeq p^{\mathbb{Z}} \times \{0\} \times \{\pm 1\} \times \mathbb{R}_+^*$.
\n- 4. $Z_{\infty} = (\mathbb{Q}_p^* \times \mathbb{Q}_q^* \times \{0\}) / G \simeq p^{\mathbb{Z}} \times q^{\mathbb{Z}} \times \{0\}.$
\n

$A = C_0(Z) \ltimes \Gamma$, $\Gamma = {\pm p^n q^m \mid n, m \in \mathbb{Z}}$

The cross product *C*∗-algebras are, up to Morita equivalence, with K the compact operators,

\n- 1.
$$
A_{\emptyset} = C_0(Z_{\emptyset}) \ltimes \Gamma = \mathcal{K} \otimes C_0(\mathbb{R}^*_{+}).
$$
\n- 2. $A_p = C_0(Z_p) \ltimes \Gamma = \mathcal{K} \otimes C(C_p)$
\n- 3. $A_q = C_0(Z_q) \ltimes \Gamma = \mathcal{K} \otimes C(C_q)$
\n- 4. $A_{\infty} = C_0(Z_{\infty}) \ltimes \Gamma = \mathcal{K} \otimes C^*(\mathbb{Z}/2\mathbb{Z}).$
\n

None of the involved *C*∗-algebras is unital but the *C*∗ algebra $B = A_p \oplus A_q \oplus A_\infty$ on the right is Morita equivalent to the unital C^* -algebra $\mathbf{C} := C(C_p) \oplus C(C_q) \oplus$ *C*∗(Z*/*2Z). We thus get the exact hexagon of *K*-theory groups

$$
K_{1}(B) \qquad K_{0}(A_{\emptyset})^{\ell_{*}} K_{0}(A) \qquad \mu_{*} K_{0}(B) \qquad (2)
$$
\n
$$
K_{1}(A)_{\tilde{\iota}_{*}} K_{1}(A_{\emptyset})^{\delta_{0}}
$$

One has

$$
- K_0(A_0) = K_0(C_0(\mathbb{R}^*)) = \{0\}.
$$

\n
$$
- K_1(A_0) = K_1(C_0(\mathbb{R}^*)) = \mathbb{Z}.
$$

\n
$$
- K_0(A_p) = K_0(C(C_p)) = \mathbb{Z},
$$

\n
$$
- K_1(A_p) = K_1(C(C_p)) = \mathbb{Z}.
$$

\n
$$
- K_0(A_q) = K_0(C(C_q)) = \mathbb{Z},
$$

\n
$$
- K_1(A_q) = K_1(C(C_q)) = \mathbb{Z}.
$$

\n
$$
- K_0(A_\infty) = K_0(C^*(\mathbb{Z}/2\mathbb{Z})) = \mathbb{Z}^2,
$$

\n
$$
- K_1(A_\infty) = K_1(C^*(\mathbb{Z}/2\mathbb{Z})) = \{0\}.
$$

One shows that the map $\delta_0 : K_0(B) \to K_1(A_0)$ is surjective.