Primes, Knots and the adele class space

Alain Connes (jt work with C. Consani)

Toposes in Mondovi September 2024

• Etale site of Spec \mathbb{Z}

Analogy Knots and Primes

Class Field theory

► Adele class space

► The arithmetic and scaling sites

► Drawing Spec \mathbb{Z} in $X_{\mathbb{Q}}$

► Finite covers of $X_{\mathbb{Q}}$

Periodic orbit as elliptic curve

• K-theory of C^* -algebra

Grothendieck-Galois $\pi_1^{et}(X)$

Let X be a connected scheme. Then there exists a profinite group π , uniquely determined up to isomorphism, such that the category \mathbf{FEt}_X of finite etale coverings of X is equivalent to the category π -sets of finite sets on which π acts continuously.

Separable algebras

B an A-algebra, and suppose that B is finitely generated and free as an A-module, $\mathrm{Tr}_{B/A}:B\to A,$ A-linear map

$$\operatorname{Tr}_{B/A}(b) := \operatorname{Tr}(m_b), \quad m_b(x) = bx$$

 $\phi:B\to\operatorname{Hom}_A(B,A)$ by

 $(\phi(x))(y) = \operatorname{Tr}(xy), \forall x, y \in B$

B separable over A $\iff \phi$ is an isomorphism.

Exo : $B = A[x]/(x^2)$ is not separable.

Finite etale morphism

A morphism $f: Y \to X$ of schemes is finite étale if there exists a covering of X by open affine subsets $U_i = \operatorname{Spec} A_i$, such that for each *i* the open subscheme $f^{-1}(U_i)$ of Y is affine, and equal to $\operatorname{Spec} B_i$, where B_i is a free separable A_i -algebra.

Ramification

Let \mathcal{O}_K be the ring of integers of an algebraic number field K, and \mathfrak{p} a prime ideal of \mathcal{O}_K . For a field extension L/K we can consider the ring of integers \mathcal{O}_L (which is the integral closure of \mathcal{O}_K in L), and the ideal $\mathfrak{p}\mathcal{O}_L$ of \mathcal{O}_L . This ideal may or may not be prime, but for finite [L:K], it has a factorization into prime ideals :

$$\mathfrak{p}\cdot\mathcal{O}_L=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_k^{e_k}$$

where the \mathfrak{p}_i are distinct prime ideals of \mathcal{O}_L . Then \mathfrak{p} is said to ramify in L if $e_i > 1$ for some i; otherwise it is unramified.

Let X be a normal integral scheme, K its function field, \overline{K} an algebraic closure of K, and M the composite of all finite separable field extensions L of K with $L \subset \overline{K}$ for which X is unramified in L. Then the fundamental group $\pi_1^{et}(X)$ is isomorphic to the Galois group Gal(M/K).

Sphere S^3	Scheme Spec \mathbb{Z}
$\pi_1\left(S^3\right) = \{1\}$	$\pi_1^{et}(\operatorname{Spec} \mathbb{Z}) = \{1\}$ Kronecker-Minkowski
$H^{3}\left(S^{3},\mathbb{Z}\right)=\mathbb{Z}$	$H^{3}(\operatorname{Spec}\mathbb{Z}, \operatorname{G}_{m}) = \mathbb{Q}/\mathbb{Z}$ Artin-Verdier
Knot C	Prime p Mumford Mazur 1963

Knot C	Prime p
Inclusion $C \subset S^3$	$r^*:\operatorname{Spec} \mathbb{F}_p \hookrightarrow \operatorname{Spec} \mathbb{Z}$
Knot complement $X = S^3 - C$	$\operatorname{Spec} \mathbb{Z} ackslash \{p\}$
$\pi_1 \left(S^3 - C \right)^{ab} = \mathbb{Z}$	$\pi_1^{et}(\operatorname{Spec} \mathbb{Z}[rac{1}{p}])^{ab} = \mathbb{Z}_p^*$
$\pi_1(C_1) \to \pi_1(S^3 - C_2)^{ab}$	$\pi_1^{et} \operatorname{(Spec} \mathbb{F}_p) o \pi_1^{et} \operatorname{(Spec} \mathbb{Z}[\frac{1}{q}])^{ab}$
Linking Number (C_1, C_2)	$p\in\mathbb{Z}_q^*$

Class Field Theory

L'objet de la théorie du corps de classes est de montrer comment les extensions abéliennes d'un corps de nombres algébriques K peuvent être déterminées par des éléments tirés de la connaissance de K lui-même; ou, si l'on veut présenter les choses en termes dialectiques, comment un corps possède en soi les éléments de son propre dépassement.

C. Chevalley (1940)

$$\operatorname{Gal}(K^{ab}:K) \simeq \left(\operatorname{GL}_1(\mathbb{A}_K)/K^{\times}\right) / \left(\operatorname{GL}_1(\mathbb{A}_K)/K^{\times}\right)_0$$

Adele class space \mathbb{A}_K/K^{\times} , ac 1996

► Local to Global : $K_v^{\times} \subset \operatorname{GL}_1(\mathbb{A}_K)/K^{\times}$ Isotropy subgroup of adele classes with a zero at the place v

► Explicit formulas, K_v^{\times} acting on transverse space K_v

$$\int k(x,x)dx = \int \delta(x-\lambda x)dx = \frac{1}{|1-\lambda|}$$

Spectral realization = absorption spectrum

Adele class space \rightarrow scaling site (ac+cc, 2014) NCG \iff Topos

$$X_{\mathbb{Q}} = \mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}} / \widehat{\mathbb{Z}}^*$$

11

The space $X_{\mathbb{Q}}$

• Adelic
$$X_{\mathbb{Q}} = \mathbb{Q}^{\times} \setminus \mathbb{A}_{\mathbb{Q}} / \widehat{\mathbb{Z}}^*$$

- ▶ Rank one subgroups of \mathbb{R} (and also up to \sim)
- ▶ Points of arithmetic site over \mathbb{R}^{\max}_+
- ▶ Points of topos $[0,\infty) \rtimes \mathbb{N}^{\times}$ (scaling site)

Rank one subgroups of \mathbb{R}

Let \mathbb{A}^f be the ring of finite adeles of \mathbb{Q} . Let Φ be the map from $(\mathbb{A}^f/\widehat{\mathbb{Z}}^*) \times \mathbb{R}^*_+$ to subgroups of \mathbb{R} defined by

 $\Phi(a,\lambda) := \lambda H_a, \quad H_a := \{q \in \mathbb{Q} \mid aq \in \widehat{\mathbb{Z}}\}.$

Then Φ is a bijection between the subset of $X_{\mathbb{Q}} = \mathbb{Q}^{\times} \setminus \mathbb{A}_{\mathbb{Q}}/\mathbb{Z}^{*}$ formed of adele classes with non-zero archimedean component, and the set of non-zero subgroups of \mathbb{R} whose elements are pairwise commensurable.

Main Theorem (ac+cc)

Let p be a prime. Let $\{\operatorname{Frob}_p\} \in \pi_1^{et}(\operatorname{Spec}(\mathbb{F}_p))$ be the canonical generator. The inverse image $\pi^{-1}(C_p) \subset X_{\mathbb{Q}}^{ab}$ of the periodic orbit C_p is canonically isomorphic to the mapping torus of the multiplication by $r^* \{\operatorname{Frob}_p\}$ in the abelianized étale fundamental group $\pi_1^{et}(\operatorname{Spec} \mathbb{Z}_{(p)})^{ab}$. The canonical isomorphism is equivariant for the action of the idele class group.

Periodic orbit C_p

 $S = \{p, \infty\}$

$$\pm p^{\mathbb{Z}} \setminus (\mathbb{Q}_p \times \mathbb{R}) / \mathbb{Z}_p^* = X_{\mathbb{Q},S}$$

Elements of $(\mathbb{Q}_p \times \mathbb{R}) / \mathbb{Z}_p^*$ are pairs (p^n, λ) with $p^{\infty} = 0$. The group \mathbb{R}_+^* acts on $X_{\mathbb{Q},S}$,

Generic orbit : Free action on pairs with elts $\neq 0$.

$$\begin{array}{l} \mathsf{Periodic \ orbit} : \ (0,\lambda) \sim (0,p\lambda) \to C_p = p^{\mathbb{Z}} \backslash \mathbb{R}^*_+ \\ (p^n,\lambda) \to (0,\lambda) \And (p^n,\lambda) \sim (1,p^{-n}\lambda) \end{array}$$

Generic orbit dense in \mathcal{C}_p

Several primes

Finite set of places $S \ni \infty$, $p_j \in S$,

$$X_{\mathbb{Q},S} := \operatorname{Fin} \left(\prod_{S} \mathbb{Q}_{v} \right) / \prod_{S \setminus \infty} \mathbb{Z}_{p}^{*}$$

where

$$\label{eq:general} \begin{split} \mathsf{F} &:= \{\pm \, p_1^{n_1} \dots p_k^{n_k} \mid n_j \in \mathbb{Z} \} \end{split}$$
 The group \mathbb{R}^*_+ acts on $X_{\mathbb{Q},S}$,

Generic orbit : Free action on x with $x_v \neq 0$ for all v.

Periodic orbits :
$$x_p = 0 \& x_v \neq 0 \rightarrow C_p = p^{\mathbb{Z}} \setminus \mathbb{R}^*_+$$

17

Etale Facts

- The abelianized étale fundamental group $\pi_1^{et}(\text{Spec } \mathbb{Z}_{(p)})^{ab}$ is canonically isomorphic to $\prod_{q \neq p} \mathbb{Z}_q^*$.
- The image $\pi_1^{et}(r^*)$ {Frob_p} in the étale abelianized fundamental group $\pi_1^{et}(\text{Spec } \mathbb{Z}_{(p)})^{ab} \simeq \prod_{q \neq p} \mathbb{Z}_q^*$ is equal to p diagonally embedded in $\prod_{q \neq p} \mathbb{Z}_q^*$.

The maximal abelian extension of \mathbb{Q} in which p is unramified is obtained by adjoining all roots of unity of order prime to p following the local to global proof of the Kronecker-Weber theorem. Its Galois group is $\prod_{q \neq p} \mathbb{Z}_q^*$. The action of Frob_p on roots of unity is given by raising to the power p.

Abelian finite covers of $X_{\mathbb{Q}}$

L finite abelian extension of $\mathbb{Q} \to \text{finite cover } X^L_{\mathbb{Q}} \to X_{\mathbb{Q}}$: $X^L_{\mathbb{Q}} := \mathbb{Q}^{\times} \setminus \mathbb{A}_{\mathbb{Q}} / W, \quad W \subset \widehat{\mathbb{Z}}^*, \ W = \text{Ker} \left(\widehat{\mathbb{Z}}^* \to \text{Gal}(L/\mathbb{Q})\right)$ $\pi^L : X^L_{\mathbb{Q}} \to X_{\mathbb{Q}}$

The group $G = \text{Gal}(L/\mathbb{Q})$ acts transitively on each fiber, and we say that the cover is unramified at $x \in X_{\mathbb{Q}}$ when G acts freely in the fiber $\{y, \pi^{L}(y) = x\}$.

There exists a smallest set R of places such that

$$x \in X_{\mathbb{Q}}, \ x_v \neq 0 \ \forall v \in R \Rightarrow X_{\mathbb{Q}}^L$$
 unramified at x

<u>Theorem</u>

 $L \to \left(\pi^L : X^L_{\mathbb{Q}} \to X_{\mathbb{Q}}\right)$ is a contravariant functor and

- 1. The finite set R of places at which the cover ramifies is the union of the archimedean place with the set of primes at which L ramifies.
- 2. Let $p \notin R$ then the monodromy of C_p in $X_{\mathbb{Q}}^L$ is the element of G given by the Frobenius Frob_p.
- 3. The connected components of the inverse image of C_p are circles labeled by the places of L over the prime p.

_

22

Role of η **for** Spec \mathbb{Z}

Let $j : \eta \to \operatorname{Spec} \mathbb{Z}$ be the generic point, the following sheaves on $\operatorname{Spec} \mathbb{Z}$ form an exact sequence

$$0 \to \mathbf{G}_m \to j_* \mathbf{G}_{m,\eta} \to \coprod_p \mathbb{Z}|p \to 0,$$

$$\mathsf{H}^{q}\left(\operatorname{Spec}\mathbb{Z}, \coprod_{p}\mathbb{Z}|p\right) = 0 \quad \text{for } q = 1, q > 2.$$

$$\mathsf{H}^2\left(\operatorname{Spec}\mathbb{Z},\coprod_p\mathbb{Z}|p
ight)=\bigoplus_p\mathbb{Q}/\mathbb{Z}$$

$$0 \to \mathsf{H}^2(\operatorname{Spec} \mathbb{Z}, \mathbf{G}_m) \to \mathsf{H}^2(\eta, \mathbf{G}_{m,\eta}) \stackrel{r_1}{\to} \bigoplus_p \mathbb{Q}/\mathbb{Z}$$

 $\to \mathsf{H}^3(\operatorname{Spec} \mathbb{Z}, \mathbf{G}_m) \to \mathsf{H}^3(\eta, \mathbf{G}_{m,\eta}) \to 0.$

Spectral realization as $H^1(X^{ab}_{\mathbb{O}},\eta)$

The idele class group acts on

$H^1(X^{ab}_{\mathbb{Q}},\eta)$

The map $\mathcal{E} : \mathcal{S}(\mathbb{A}_{\mathbb{Q}})_0 \to \mathcal{S}(C_{\mathbb{Q}})$ comes from the trace map in Hochschild homology using cross products

 $\mathcal{S}(\mathbb{A}_{\mathbb{Q}})\ltimes \mathbb{Q}^{ imes}$

$$0 \to H^{0}(X, Y) \to H^{0}(X) \xrightarrow{\mathcal{E}} H^{0}(Y) \to H^{1}(X, Y)$$
$$\to H^{1}(X) \xrightarrow{\rho} H^{1}(Y) \to H^{2}(X, Y) \to \dots$$

Geometric structure of $X_{\mathbb{Q}}$

The action of \mathbb{R}^{\times}_+ on the space $X_{\mathbb{Q}}$ is in fact the action of the Frobenius automorphisms $\operatorname{Fr}_{\lambda}$ on the points of the arithmetic site over \mathbb{R}^{\max}_+ .

Topos + characteristic 1

- Arithmetic Site.
- Frobenius correspondences.
- Extension of scalars to \mathbb{R}^{\max}_+ .

Why semirings?

A category C is *semiadditive* if it has finite products and corpoducts, the morphism $0 \rightarrow 1$ is an isomorphism (thus C has a 0), and the morphisms

$$\gamma_{M,N}: M \vee N \to M \times N$$

are isomorphisms.

Then End(M) is naturally a semiring for any object M.

Finite semifields, characteristic 1

 $\mathbb{K}=$ finite semifield : then \mathbb{K} is a field or $\mathbb{K}=\mathbb{B}$:

$$\mathbb{B} := \{0, 1\}, \quad 1 + 1 = 1$$

The semifield \mathbb{Z}_{max}

Lemma : Let F be a semifield of characteristic 1, then for $n \in \mathbb{N}^{\times}$ the map $\operatorname{Fr}_n \in \operatorname{End}(\mathbb{F})$, $\operatorname{Fr}_n(x) := x^n \quad \forall x \in F$ defines an **injective endomorphism** of F.

 $\mathbb{Z}_{\max} := (\mathbb{Z} \cup \{-\infty\}, \max, +), \text{ unique semifield with mul$ $tiplicative group infinite cyclic.}$ $multiplicative notation : Addition \lor, u^n \lor u^m = u^k, with$ $k = \sup(n, m).$ Multiplication : $u^n u^m = u^{n+m}.$

Map $\mathbb{N}^{\times} \to \text{End}(\mathbb{Z}_{\max})$, $n \mapsto \text{Fr}_n$ is isomorphism of semigroups. (extend to 0)

Arithmetic Site $(\widehat{\mathbb{N}^{\times}}, \mathbb{Z}_{max})$

 \mathbb{Z}_{\max} on which \mathbb{N}^{\times} acts by $n \mapsto \operatorname{Fr}_n$ is a semiring in the topos $\widehat{\mathbb{N}^{\times}}$ of sets with an action of \mathbb{N}^{\times} .

The Arithmetic Site $(\widehat{\mathbb{N}^{\times}}, \mathbb{Z}_{max})$ is the topos $\widehat{\mathbb{N}^{\times}}$ endowed with the structure sheaf : $\mathcal{O} := \mathbb{Z}_{max}$ semiring in the topos.

Characteristic 1

The role of
$$\mathbb{F}_q$$
 is played by $\mathbb{B}:=\{0,1\}, \quad 1+1=1$

No finite extension, but

 $\operatorname{Fr}_{\lambda}(x) = x^{\lambda}$ automorphisms of \mathbb{R}^{\max}_+ .

$$\operatorname{Gal}_{\mathbb{B}}(\mathbb{R}^{\max}_{+}) = \mathbb{R}^{\times}_{+}$$

Points of the arithmetic site

over \mathbb{R}^{\max}_+

These are defined as pairs $(p, f_p^{\#})$ of a point p of $\widehat{\mathbb{N}^{\times}}$ and local morphism $f_p^{\#} : \mathcal{O}_p \to \mathbb{R}_+^{\max}$.

<u>Theorem</u>

The points $\mathscr{A}(\mathbb{R}^{\max}_+)$ of $(\widehat{\mathbb{N}^{\times}}, \mathbb{Z}_{\max})$ on \mathbb{R}^{\max}_+ form the double quotient $\mathbb{Q}^{\times}\setminus\mathbb{A}_{\mathbb{Q}}/\widehat{\mathbb{Z}}^*$. The action of the Frobenius $\operatorname{Fr}_{\lambda}$ of \mathbb{R}^{\max}_+ corresponds to the action of the idele class group.

Extension of scalars to \mathbb{R}_{max}

The following holds :

 $\mathbb{Z}_{\mathsf{max}}\widehat{\otimes}_{\mathbb{B}}\mathbb{R}_{\mathsf{max}}\simeq \mathcal{R}(\mathbb{Z})$

 $\mathcal{R}(\mathbb{Z}) =$ semiring of continuous, convex, piecewise affine functions on \mathbb{R}_+ with slopes in $\mathbb{Z} \subset \mathbb{R}$ and only finitely many discontinuities of the derivative

These functions are endowed with the pointwise operations of functions with values in \mathbb{R}_{max}

Points of the topos $[0,\infty) \rtimes \mathbb{N}^{\times}$

<u>**Theorem</u></u> : The points of the topos [0,\infty) \rtimes \mathbb{N}^{\times} form the double quotient \mathbb{Q}^{\times} \setminus \mathbb{A}_{\mathbb{Q}}/\widehat{\mathbb{Z}}^*.</u>**

Corollary : One has a canonical isomorphism Θ between the points of the topos $[0,\infty) \rtimes \mathbb{N}^{\times}$ and $\mathscr{A}(\mathbb{R}^{\max}_{+})$ *i.e.* the points of the arithmetic site defined over \mathbb{R}^{\max}_{+} .

Structure sheaf of $[0,\infty) \rtimes \mathbb{N}^{\times}$

This is the sheaf on $[0,\infty) \rtimes \mathbb{N}^{\times}$ associated to convex, piecewise affine functions with integral slopes

Same as for the localization of zeros of analytic functions $f(X) = \sum a_n X^n$ in an annulus

$$A(r_1, r_2) = \{ z \in K \mid r_1 < |z| < r_2 \}$$

 $\tau(f)(x) := \max_{n} \{-nx - v(a_{n})\}, \quad \forall x \in (-\log r_{2}, -\log r_{1})\}$

$$\tau(f)(x) := \frac{1}{2\pi} \int_0^{2\pi} \log |f(e^{-x+i\theta})| d\theta$$

The degree of a divisor is a real number. For any divisor D in C_p , there is a corresponding Riemann-Roch problem with solution space $H^0(D)$. The continuous dimension * $\text{Dim}(H^0(D))$ of this \mathbb{R}^{\max}_+ -module is defined by the limit

$$Dim(H^{0}(D)) := \lim_{n \to \infty} p^{-n} dim(H^{0}(D)^{p^{n}})$$
 (1)

 $\ast.$ In analogy with von-Neumann's continuous dimensions of the theory of type II factors

where $H^0(D)^{p^n}$ is a naturally defined filtration and dim (\mathcal{E}) denotes the topological dimension of an \mathbb{R}^{\max}_+ -module.

(i) Let $D \in Div(C_p)$ be a divisor with $deg(D) \ge 0$. Then the limit in (1) converges and one has

 $\mathsf{Dim}(H^0(D)) = \mathsf{deg}(D).$

(*ii*) The following Riemann-Roch formula holds $Dim(H^0(D)) - Dim(H^0(-D)) = deg(D) \qquad \forall D \in Div(C_p).$

Rational functions

For $W \subset C_p$ open, $\mathcal{O}_p(W)$ is simplifiable, one lets \mathcal{K}_p the sheaf associated to the presheaf $W \mapsto \operatorname{Frac} \mathcal{O}_p(W)$.

Lemma The sections of the sheaf \mathcal{K}_p are continuous piecewise affine functions with slopes in H_p endowed with max (\lor) and the sum.

$$(x-y) \lor (z-t) = ((x+t) \lor (y+z)) - (y+t).$$

Cartier divisors

Lemma : The sheaf $CDiv(C_p)$ of Cartier divisors *i.e.* the quotient sheaf $\mathcal{K}_p^{\times}/\mathcal{O}_p^{\times}$, is isomorphic to the sheaf of naive divisors $H \mapsto D(H) \in H$,

 $\forall \lambda, \exists V \text{ open } \lambda \in V, D(\mu) = 0, \forall \mu \in V, \mu \neq \lambda$

Point \mathfrak{p}_H associated to $H \subset \mathbb{R}$ and f section of \mathcal{K} at \mathfrak{p}_H .

Order
$$(f) = h_{+} - h_{-} \in H \subset \mathbb{R}$$

$$h_{\pm} = \lim_{\epsilon \to 0 \pm} \frac{f((1 + \epsilon)H) - f(H)}{\epsilon}$$

•

36

Divisors

Definition : A divisor is a global section of $\mathcal{K}_p^{\times}/\mathcal{O}_p^{\times}$, *i.e.* a map $H \to D(H) \in H$ vanishing except on finitely many points.

<u>Proposition</u> : (*i*) The divisors $Div(C_p)$ form an abelian group under addition.

(*ii*) The condition $D'(H) \ge D(H)$, $\forall H \in C_p$, defines a partial order on $\text{Div}(C_p)$.

(*iii*) The **degree** map is additive and order preserving

$$\deg(D) := \sum D(H) \in \mathbb{R}.$$

Principal divisors

The sheaf \mathcal{K}_p admits global sections :

$$\mathcal{K} := \mathcal{K}(C_p) = H^0(\mathbb{R}^*_+/p^{\mathbb{Z}}, \mathcal{K}_p)$$

the semifield of global sections.

Principal divisors : The map which to $f \in \mathcal{K}^{\times}$ associates the divisor

$$(f) := \sum_{H} (H, \operatorname{Ord}_{H}(f)) \in \operatorname{Div}(C_{p})$$

is a group morphism $\mathcal{K}^{\times} \to \mathcal{P} \subset \text{Div}(C_p)$.

The subgroup $\mathcal{P} \subset \text{Div}(C_p)$ of principal divisors is **contained in the kernel** of the morphism deg : $\text{Div}(C_p) \to \mathbb{R}$:

$$\sum_{H} \operatorname{Ord}_{H}(f) = 0, \quad \forall f \in \mathcal{K}^{\times}.$$

38

Invariant χ

For p > 2 one considers the ideal $(p-1)H_p \subset H_p$.

$$0 \to (p-1)H_p \to H_p \xrightarrow{r} \mathbb{Z}/(p-1)\mathbb{Z} \to 0$$

Lemma : For $H \subset \mathbb{R}$, $H \simeq H_p$, the map $\chi : H \to \mathbb{Z}/(p-1)\mathbb{Z}$, $\chi(\mu) = r(\mu/\lambda)$ where $H = \lambda H_p$ is independent of the choice of λ .

<u>Theorem</u>

The map (\deg, χ) is a **group isomorphism**

 (\deg, χ) : $\mathsf{Div}(C_p)/\mathcal{P} \to \mathbb{R} \times (\mathbb{Z}/(p-1)\mathbb{Z})$

where \mathcal{P} is the subgroup of principal divisors.

Theta Functions on $C_p = \mathbb{R}^*_+/p^{\mathbb{Z}}$

$$\prod_{0}^{\infty} (1 - t^m w) \to f_+(\lambda) := \sum_{0}^{\infty} (0 \lor (1 - p^m \lambda))$$
$$\prod_{0}^{\infty} (1 - t^m w^{-1}) \to f_-(\lambda) := \sum_{0}^{\infty} (0 \lor (n^{-m} \lambda - 1))$$

$$\prod_{1}^{\infty} (1 - t^m w^{-1}) \to f_-(\lambda) := \sum_{1}^{\infty} \left(0 \lor (p^{-m} \lambda - 1) \right)$$
Theorem

Any $f \in \mathcal{K}(C_p)$ has a canonical decomposition

$$f(\lambda) = \sum_{i} \Theta_{h_i,\mu_i}(\lambda) - \sum_{j} \Theta_{h'_j,\mu'_j}(\lambda) - h\lambda + c$$

where $c \in \mathbb{R}$, $(p-1)h = \sum h_i - \sum h'_j$ and $h_i \leq \mu_i < ph_i$, $h'_j \leq \mu_j < ph'_j$.

<u>p-adic filtration $H^0(D)^{\rho}$ </u>

Definition : Let $D \in Div(C_p)$ one lets $H^0(D) := \{f \in \mathcal{K}(C_p) \mid D + (f) \ge 0\}$ It is an \mathbb{R}_{max} -module, $f, g \in H^0(D) \Rightarrow f \lor g \in H^0(D)$.

Lemma : Let $D \in Div(C_p)$ be a divisor, one gets a filtration of $H^0(D)$ by \mathbb{R}_{max} -sub-modules :

$$H^{0}(D)^{\rho} := \{ f \in H^{0}(D) \mid ||f||_{p} \leq \rho \}$$

using the *p*-adic norm.

Real valued Dimension

$$\operatorname{Dim}_{\mathbb{R}}(H^{0}(D)) := \lim_{n \to \infty} p^{-n} \operatorname{dim}_{\operatorname{top}}(H^{0}(D)^{p^{n}})$$

where the *topological dimension* $\dim_{top}(X)$ is the number of real parameters on which solutions depend.

Riemann-Roch Theorem

(*i*) Let $D \in \text{Div}(C_p)$ a divisor with $\text{deg}(D) \ge 0$, then $\lim_{n \to \infty} p^{-n} \dim_{\text{top}}(H^0(D)^{p^n}) = \text{deg}(D)$ (*ii*) One has the Riemann-Roch formula : $\text{Dim}_{\mathbb{R}}(H^0(D)) - \text{Dim}_{\mathbb{R}}(H^0(-D)) = \text{deg}(D), \ \forall D \in \text{Div}(C_p).$

► Are abelian covers of Spec Z sufficient for the 3-dimensionality ?

► Explore the etale site over the scaling site. ► Cover of C_p viewed as a tropical elliptic curve, with $\mathbb{Q}_p \times \mathbb{R}$ involved in Riemann-Roch formula.

► Can one characterize the finite covers as finite abelian tropical covers of the scaling site endowed with its structure sheaf.

<u>*K*-theory of C^* -algebra</u>

The simplest meaningful computation of the K-theory of the involved C^* -algebras is for the cross product Aassociated to the union in $X_{\mathbb{Q},S}$, $S = \{p,q,\infty\}$, of the generic orbit with the three periodic orbits C_p, C_q, C_∞ . One obtains that $K_0(A) \simeq \mathbb{Z}^3$ reflects the presence of the three periodic orbits, while $K_1(A) \simeq \mathbb{Z}^2$ reflects the one-dimensionality of the periodic orbits C_p, C_q .

$NCG \iff Topos$

K-theory of C^* -algebra

 $S = \{p, q, \infty\}$, and the open subspace

$$\Omega \subset \mathbb{A}_{\mathbb{Q},S} = \mathbb{Q}_p \times \mathbb{Q}_q \times \mathbb{R}$$

given by the adeles which have at most one zero.

Dividing Ω by the action of the compact group $G = \mathbb{Z}_p^* \times \mathbb{Z}_q^*$ gives a locally compact space $Z := \Omega/G$ which is the union of the following 4 subspaces :

1.
$$Z_{\emptyset} = \left(\mathbb{Q}_{p}^{*} \times \mathbb{Q}_{q}^{*} \times \mathbb{R}^{*}\right) / G \simeq p^{\mathbb{Z}} \times q^{\mathbb{Z}} \times \{\pm 1\} \times \mathbb{R}_{+}^{*}.$$

2. $Z_{p} = \left(\{0\} \times \mathbb{Q}_{q}^{*} \times \mathbb{R}^{*}\right) / G \simeq \{0\} \times q^{\mathbb{Z}} \times \{\pm 1\} \times \mathbb{R}_{+}^{*}.$
3. $Z_{q} = \left(\mathbb{Q}_{p}^{*} \times \{0\} \times \mathbb{R}^{*}\right) / G \simeq p^{\mathbb{Z}} \times \{0\} \times \{\pm 1\} \times \mathbb{R}_{+}^{*}.$
4. $Z_{\infty} = \left(\mathbb{Q}_{p}^{*} \times \mathbb{Q}_{q}^{*} \times \{0\}\right) / G \simeq p^{\mathbb{Z}} \times q^{\mathbb{Z}} \times \{0\}.$
₄₅

$A = C_0(Z) \ltimes \Gamma, \ \Gamma = \{\pm p^n q^m \mid n, m \in \mathbb{Z}\}$

The cross product C^* -algebras are, up to Morita equivalence, with \mathcal{K} the compact operators,

1.
$$A_{\emptyset} = C_0(Z_{\emptyset}) \ltimes \Gamma = \mathcal{K} \otimes C_0(\mathbb{R}^*_+).$$

2. $A_p = C_0(Z_p) \ltimes \Gamma = \mathcal{K} \otimes C(C_p)$
3. $A_q = C_0(Z_q) \ltimes \Gamma = \mathcal{K} \otimes C(C_q)$
4. $A_{\infty} = C_0(Z_{\infty}) \ltimes \Gamma = \mathcal{K} \otimes C^*(\mathbb{Z}/2\mathbb{Z}).$

None of the involved C^* -algebras is unital but the C^* algebra $B = A_p \oplus A_q \oplus A_\infty$ on the right is Morita equivalent to the unital C^* -algebra $\mathbf{C} := C(C_p) \oplus C(C_q) \oplus$ $C^*(\mathbb{Z}/2\mathbb{Z})$. We thus get the exact hexagon of K-theory groups

$$K_{0}(A_{\emptyset})^{l_{*}}K_{0}(A)$$

$$\rho_{*}$$

$$K_{1}(B)$$

$$K_{0}(B)$$

$$K_{0}(B)$$

$$K_{1}(A)_{\bar{\iota}_{*}}K_{1}(A_{\emptyset})^{\delta_{0}}$$

$$(2)$$

One has

$$- K_0(A_{\emptyset}) = K_0(C_0(\mathbb{R}^*_+)) = \{0\}.$$

$$- K_1(A_{\emptyset}) = K_1(C_0(\mathbb{R}^*_+)) = \mathbb{Z}.$$

$$- K_0(A_p) = K_0(C(C_p)) = \mathbb{Z},$$

$$- K_1(A_p) = K_1(C(C_p)) = \mathbb{Z}.$$

$$- K_0(A_q) = K_0(C(C_q)) = \mathbb{Z},$$

$$- K_1(A_q) = K_1(C(C_q)) = \mathbb{Z}.$$

$$- K_0(A_{\infty}) = K_0(C^*(\mathbb{Z}/2\mathbb{Z})) = \mathbb{Z}^2,$$

$$- K_1(A_{\infty}) = K_1(C^*(\mathbb{Z}/2\mathbb{Z})) = \{0\}.$$

One shows that the map $\delta_0 : K_0(B) \to K_1(A_{\emptyset})$ is surjective.