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Abrupt changes, nonlinear systems and impulsive stimuli
Nature is full of non-smooth systems:

What kind of mathematical model? Piecewise smooth? Infinite derivatives in
infinitesimal intervals? Differential equations or not? Calculus of variations?
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Also within mathematics

L. Hörmander: “In differential calculus one encounters immediately
the unpleasant fact that not every function is differentiable. The
purpose of distribution theory is to remedy this flaw; indeed, the
space of distributions is essentially the smallest extension of the space
of continuous functions where differentiability is always well defined"

V.I. Arnol’d: “Nowadays, when teaching analysis, it is not very
popular to talk about infinitesimal quantities. Consequently,
present-day students are not fully in command of this language.
Nevertheless, it is still necessary to have command of it”
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The simplest way to differentiate continuous functions

Theorem
The space of Schwartz distributions (D′, λ, (Di )i ) on Rn is a co-universal solution (the
unique arrow starts from the solution) of the following problem:

1 D′ : (Rn)op −→ VectR is a sheaf of real vector spaces
2 λ : C0 −→ D′ is a sheaf morphism (embedding of continuous functions)
3 Dk : D′ −→ D′ (derivative w.r.t. xk), k = 1, . . . , n, are compatible with partial

derivatives of C1
k (k means “w.r.t. xk”) functions:

C1
k
� � ιk //

∂
∂xk ��

C0 λ // D′

Dk
��

C0 λ // D′

4 Let α ∈ Nn, f ∈ C0(U) and U = (c1 − r , c1 + r) × n. . . . . . ×(cn − r , cn + r).
Assume f = θ1 + . . . + θn, where θk is a polynomial in xk of degree < αk whose
coefficients ∈ C0(U) independent by xk , then Dα

U (λU(f )) = 0 (Pα denotes the set
of these polynomials)

5 Dh ◦ Dk = Dk ◦ Dh for all h, k = 1, . . . , n
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Problems with Schwartz distributions

Schwartz distributions are not functions: ̸ ∃ δ(x), H(x)

They are good for linear problems, but not for nonlinear ones: Leibniz
(H2)′ = 2HH ′ and (H3)′ = 3H2H ′ . But H = H2 = H3 , so this implies
2HH ′ = H ′ = 3HH ′ . Therefore, HH ′ = 0 and 2HH ′ = H ′ = δ = 0

Schwartz impossibility theorem: there does not exist a differential algebra
(A,+, ·,D) embedding distributions, where D is a linear operator extending
the distributional derivative and satisfying Leibnitz rule, and where · is an
extension of the pointwise product of continuous functions

No composition such as δ ◦ δ, hence they are not a category

Nonlinear ODE or PDE cannot even be formulated y ′ = F (t, y)

Even for linear ODE we cannot formulate an initial value problem ̸ ∃ y(t0)
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Grothendieck’s freedom from peers

1 The anchoring bias is the tendency to rely too heavily on one trait or
piece of information when making decisions (usually the first piece of
information acquired on that subject)

2 Common source bias, the tendency to combine or compare research
studies from the same source, or from sources that use the same
methodologies or data

3 Conservatism bias, the tendency to insufficiently revise one’s belief
when presented with new evidence

4 Functional fixedness, a tendency limiting a person to using an object
only in the way it is traditionally used

5 Law of the instrument, an over-reliance on a familiar tool or methods,
ignoring or under-valuing alternative approaches

Grothendieck called this kind of behavior in math
“lacking of freedom from peers”
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Different point of views on generalized functions
(Schwartz, Lojasiewicz, Laugwitz, Schmieden, Egorov, Robinson, Colombeau, Rosinger, Levi-Civita, Keisler, Connes, etc.)

T (φ) =
∫
Rn T (x)φ(x) dx

Dirac delta δ(x) Heaviside function H(x)

GF after Schwartz: they are functionals and not functions

D(Ω) = {f ∈ C∞(Ω) | supp(f ) ⋐ Ω} , T : D(Ω) −→ R continuous

GF for Cauchy, Poisson, Kirchhoff, Helmholtz, Kelvin, Heaviside and Dirac:
smooth set-theoretical maps obtained from ordinary smooth maps by introducing
suitable infinitesimal or infinite parameters
E.g. set an infinitesimal σ in a Gaussian density N(x , σ) to have a δ-like function

N(−, σ) : R̄ −→ R̄

To formalize this original approach, we need infinitesimal and infinite numbers
among our new extended ring of scalars R̄ ⊇ R
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The simplest way to have inf numbers: The ring of Robinson-Colombeau

Definitions
Let ρ = (ρε) : (0, 1] =: I −→ I be a net such that (ρε) → 0 (a gauge)

1 We write ∀0ε : P(ε) for ∃ε0 ∈ (0, 1] ∀ε ∈ (0, ε0] : P(ε)

2 (xε) ∈ Rρ ⊆ RI if ∃N ∈ N ∀0ε : |xε| ≤ ρ−N
ε (ρ-moderate)

3 (xε) ∼ρ (yε) if ∀n ∈ N ∀0ε : |xε − yε| ≤ ρn
ε (xε − yε is ρ -negligible)

4 ρR̃ := Rρ/ ∼ρ Robinson-Colombeau ring of generalized numbers;
[(xε)]∼ =: [xε] = x ∈ ρR̃

5 x ≤ y if ∀x = [xε] ∃y = [yε] ∀0ε : xε ≤ yε

x < y if x ≤ y and y − x is invertible in ρR̃; |[xε]| := [|xε|] ∈ ρR̃,
dρ := [ρε] ∈ ρR̃>0

6 (∀r ∈ R>0 : |x | ≤ r) ⇐⇒ limε→0+ xε = 0;
(∀r ∈ R>0 : |x | ≥ r) ⇐⇒ limε→0+ |xε| = +∞

7 Br (c) = {x ∈ ρR̃n | |x − c| < r} for r > 0 generate sharp topology,
e.g. Bdρq (c) for q ∈ N
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Intuitive interpretation 1: dynamic points

ε ∈ (0, 1], ε → 0+: ε-time

x = [xε] ∈ ρR̃n (arbitrary) dynamic point of Rn

Why arbitrary (ρ-moderate) representatives (xε)? It’s necessary to
have: intermediate value, mean value theorems...

Paolo Giordano (UniVienna) Topos of GSF Mondovì 2024 9 / 32



Intuitive interpretation 1: dynamic points

ε ∈ (0, 1], ε → 0+: ε-time
x = [xε] ∈ ρR̃n (arbitrary) dynamic point of Rn

Why arbitrary (ρ-moderate) representatives (xε)? It’s necessary to
have: intermediate value, mean value theorems...

Paolo Giordano (UniVienna) Topos of GSF Mondovì 2024 9 / 32



Intuitive interpretation 1: dynamic points

ε ∈ (0, 1], ε → 0+: ε-time
x = [xε] ∈ ρR̃n (arbitrary) dynamic point of Rn

Why arbitrary (ρ-moderate) representatives (xε)? It’s necessary to
have: intermediate value, mean value theorems...

Paolo Giordano (UniVienna) Topos of GSF Mondovì 2024 9 / 32



Intuitive interpretation 1: dynamic points

ε ∈ (0, 1], ε → 0+: ε-time
x = [xε] ∈ ρR̃n (arbitrary) dynamic point of Rn

Why arbitrary (ρ-moderate) representatives (xε)? It’s necessary to
have: intermediate value, mean value theorems...

Paolo Giordano (UniVienna) Topos of GSF Mondovì 2024 9 / 32



Intuitive interpretation 2: dynamic sets
In the same way we can generate subsets of ρR̃n, e.g. Br (c) is “generated” by the
net BE

rε
(cε) ⊆ Rn.

Let Aε ⊆ Rn, then
[Aε] :=

{
[aε] ∈ ρR̃n | ∀0ε : aε ∈ Aε

}
(internal set)

⟨Aε⟩ :=
{

[aε] ∈ ρR̃n | ∃q ∈ R>0 ∀0ε : d(aε,Rn \ Aε) > ρq
ε

}
(strongly internal set)
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The universal way to have GF (i.e. with all the ρ-regularizations)

The idea: Set an infinitesimal σ = [σε] in a Gaussian density N(x , σ): we
get a net (N(−, σε)) of smooth functions...

Definition
Let X ⊆ ρR̃n and Y ⊆ ρR̃d . We say that f : X −→ Y is a GSF,
f ∈ ρGC∞(X ,Y ), if

1 f : X −→ Y is a set-theoretical function
2 There exists a net (fε) ∈ C∞(Ωε,Rd)I such that X ⊆ ⟨Ωε⟩ for all

[xε] ∈ X :
2a. f (x) = [fε(xε)]

2b. ∀α ∈ Nn : (∂αfε(xε)) is ρ−moderate

Equivalently: ∃(fε) ∈ C∞(Rn,Rd)I

Universal property: any other way to get maps using nets of smooth
functions is “smaller”
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Grothendieck’s rising sea method

Schwartz’s distributions are embedded and smooth functions preserved
GSF are freely closed with respect to composition: δ ◦ δ, H ◦ δ, δ ◦ H...
One-dimensional integral calculus using primitives
Classical theorems: intermediate value, (integral) mean value, Taylor’s
formulas, extreme value theorem, local and global inverse and implicit
function theorems
Multidimensional integration with generalized additivity and convergence
theorems (pointwise convergence e.g. on [a, b]n implies uniform converge)
ODE and PDE: Banach fixed point, Picard-Lindelöf for PDE, maximal set of
existence, Gronwall, flux, Hadamard well-posedness, rel. with classical
solutions...
Calculus of variations and optimal control: Fundamental Lemma, second
variation and minimizers, necessary Legendre condition, Jacobi fields,
Conjugate points and Jacobi’s theorem, Noether’s theorem, Pontryagin
Hyperfinite Fourier transform for all GSF, also of non tempered type
Generalized holomorphic functions: we can extend compactly supported
distributions from R to C
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Not all properties can be preserved

1 The sharp topology induces the discrete topology on R (but GSF are
continuous)

to have infinite slope and continuity

we must have infinitesimal neighborhoods

and hence the trace topology on R is
discrete

1 Infinitesimals D∞ := {h ∈ ρR̃ | h ≈ 0} is clopen, hence every interval
[a, b] is not connected (but δ is analytic!)

2 sup(D∞) and inf(D∞) do not exist
3 Every non-Archimedean theory has similar “problems”
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Physical modeling and GF (J. Marsden)

Actually, it rarely happens that the world is C2:

Length of the pendulum Λ(θ) = H(θ0 − θ)L1 + L2

kinetic energyT (θ, θ̇) = 1
2 mθ̇2Λ(θ)2

∂T
∂θ

(θ0, θ̇) is an infinite number

“infinite changes/quantities are not possible in reality/physics”: epistemologically
wrong
We are not modeling what happens at singularities: this would require new
physical ideas (J. von Neumann’s reasonably wide area)
We consider physical systems where the duration of the singularity is negligible
with respect to the durations of the other phenomena that take place in the
system: the duration of the singularity is infinitesimal, thereby infinite derivatives

θ̈ + θ̇
Λ̇(θ)
Λ(θ) − g Λ̇(θ)

θ̇Λ(θ)2
(cos θ − cos θ0) + g
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Examples from physics 1
Rigorous deduction of Snell’s laws (discontinuous Lagrangians in optics)
Finite and infinite potential wells in QM; formalization of uncertainty principle with
Dirac delta
Oscillatory motion of the pendulum in the interface of two media and non linear
strain-stress model

Collision with coefficient of restitution vafter
vbefore

≤ 1
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Sheaf property for GSF: first remarks

Set i : ρR̃ → ρR̃ as i(x) := 1 if x ≈ 0 (x is infinitesimal) and i(x) := 0
otherwise.

The domain ρR̃ of this function is the disjoint union of the sharply
open sets D∞ = {x ∈ ρR̃ | x ≈ 0} (clopen) and its complement Dc

∞.
Moreover, i |D∞ ≡ 1 and i |Dc

∞
≡ 0 are both GSF. However, i is not a GSF

because it doesn’t satisfy the intermediate value theorem. This shows that
ρGC∞ is not a sheaf with respect to the sharp topology (it is if we restrict to
Euclidean open sets, but...)
Therefore, in order to have a beautiful sheaf property, it does not suffice to
consider “sharply open set in ρR̃n (any n ∈ N) and GSF”, because we do not
have a sheaf... in this way
In the following ρSGC∞ denotes the category of strongly internal sets and
GSF
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Sheaf property preliminaries: functionally compact sets

Definition
A subset K of ρR̃n is called functionally compact, denoted by K⋐f

ρR̃n, if there exists a
net (Kε) such that

K = [Kε] :=
{

[xε] ∈ ρR̃n | ∀0ε : xε ∈ Kε

}
∃R ∈ ρR̃>0 : K ⊆ BR(0)
∀ε ∈ I : Kε ⋐ Rn

1 Example: [−dρ−1, dρ−1], f (K) ⋐f
ρR̃d

2 GSF satisfy the extreme value theorem on K
3 [−dρ−1, dρ−1]n ⊇ Rn

4 Let X ⊆ ρR̃n, we say X admits a functionally compact exhaustion if there exists a
sequence (Kq)q∈N such that Kq ⋐f

ρR̃n, Kq ⊆ int (Kq+1), X =
⋃

q∈N Kq.

For
example, every strongly internal set X = ⟨Aε⟩ (e.g. any ball) admits a functionally
compact exhaustion
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Sheaf property: the dynamic compatibility condition

Definition
1 [J ] := {(jε) | jε ∈ J ,∀ε} = J I for any arbitrary set J

2 Let X ⊆ ρR̃n, Y ⊆ ρR̃d , f ∈ Set(X ,Y ), K ⋐f X ⊆
⋃

j∈J Uj , and assume
that for all j ∈ J we have fj := f |Uj ∩X ∈ ρGC∞(Uj ∩ X ,Y ).Then we say that
(fj)j∈J satisfies the dynamic compatibility condition (DCC) on the cover
(K ∩ Uj)j∈J if for all j ∈ J there exist nets (fjε) defining fj , for each j ∈ J ,
such that setting Uȷ̄ := ⟨Ujε,ε⟩, we have:

1 ∀ȷ̄ = (jε) ∈ [J ] ∀[xε] ∈ Uȷ̄ ∩ K ∀α ∈ Nn : (∂αfjε,ε(xε)) ∈ Rd
ρ

2 ∀ȷ̄ = (jε), h̄ = (hε) ∈ [J ] ∀[xε] ∈ K ∩ Uȷ̄ ∩ Uh̄ : [fjε,ε(xε)] = [fhε,ε(xε)]

Finally, we say that (fj)j∈J satisfies the DCC on the cover (Uj)j∈J if it satisfies the
DCC on each functionally compact set contained in X
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Sheaf property

Theorem
Let X ⊆ ρR̃n be a set that admits a functionally compact exhaustion,
Y ⊆ ρR̃d and f ∈ Set(X ,Y ). Let X ⊆

⋃
j∈J Uj , where for all j ∈ J we

have fj := f |Uj ∩X ∈ ρGC∞(Uj ∩ X ,Y ) and Uj is a strongly internal set.
Assume that (fj)j∈J satisfies the dynamic compatibility condition on the
cover (Uj)j∈J . Then f ∈ ρGC∞(X ,Y ).

The DCC implies the classical one
The DCC is a necessary condition if we assume that the sections
(fj)j∈J glue together into a GSF
Is this sheaf property based on the DCC a particular case of the
general abstract notion of sheaf?
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The category ρGℓ∞ of glueable families 1/2

Definition
ρGℓ∞ is the category of glueable families, whose objects are non empty families
(Uj)j∈J ∈ ρGℓ∞ of strongly internal sets in some space ρR̃u:

J ̸= ∅, ∃u ∈ N ∀j ∈ J : ρR̃u ⊇ Uj ∈ ρSGC∞

We say that X φ−−−→ Y in ρGℓ∞ if X = (Uj)j∈J , Y = (Vh)h∈H ∈ ρGℓ∞ and
φ =

(
(fj)j∈J , α

)
, where:

1 The map α ∈ Set(J ,H) is called a reparametrization
2 The family of GSF fj ∈ ρSGC∞(Uj ,Vα(j)), j ∈ J , satisfies the DCC on

U :=
⋃

j∈J Uj

3 U =
⋃

j∈J Uj admits a functionally compact exhaustion
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The category ρGℓ∞ of glueable families 2/2

Composition and identities in ρGℓ∞ are defined as follows: Let
X φ−−−→ Y ψ−−−→ Z in ρGℓ∞, and set X = (Uj)j∈J , Y = (Vh)h∈H , Z = (Wl)l∈L,
φ =

(
(fj)j∈J , α

)
, ψ =

(
(gh)h∈H , β

)
. Then

Uj
fj−−−→ Vα(j)

gα(j)−−−−−→ Wβ(α(j)) ∀j ∈ J

J α−−−→ H β−−−→ L,

and we hence set φ · ψ :=
((

fj · gα(j)
)

j∈J , α · β
)

, 1X :=
((

1Uj

)
j∈J , 1J

)
.

Lemma
ρGℓ∞ is a category and ρSGC∞ ⊆ ρGℓ∞
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Coverage of glueable functions
We now introduce a coverage on the category ρGℓ∞ of glueable families:

Definition
Let E = (We)e∈E ∈ ρGℓ∞. Then we say that γ ∈ Γ(E) if there exists a non empty
J ∈ Set such that:

1 γ = (γj)j∈J and γj =
(
(ih)h∈J , δ

)
for all j ∈ J

2 J δ−−−→ E is a surjective map
3 ij : Dj

� � // Wδ(j) for all j ∈ J , where (Dj)j∈J ∈ ρGℓ∞

4 We =
⋃

{Dj | δ(j) = e, j ∈ J} for all e ∈ E

Theorem
Γ is a coverage on ρGℓ∞ and (ρGℓ∞, Γ) is a concrete site

Definition
The category of sheaves ρTGC∞ := Sh (ρGℓ∞, Γ) is called the Grothendieck topos of
generalized smooth functions
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The sheaf of glueable functions

The DCC is the key property to prove the following

Theorem
For each Y ∈ ρGℓ∞, the functor ρGℓ∞(−,Y) is a concrete sheaf on the
concrete site (ρGℓ∞, Γ): ρGℓ∞(−,Y) ∈ ρTGC∞ (ρGℓ∞, Γ).
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FWF project proposal

Together with:

1 Katsuhiko Kuribayashi, Shinshu University
2 Kazuhisa Shimakawa, Okayama University
3 Norio Iwase, Kyushu University
4 Michael Kunzinger, University of Vienna

we submitted an interdisciplinary FWF project between the Department of
Mathematics, Faculty of Science, Shinshu University and the Faculty of
Mathematics, University of Vienna, where we propose to develop several
ideas linking mathematical analysis and algebraic topology.

The main idea is to make differential homotopy theory with continuous
functions embedded as GSF or synthetic (non-smooth) differential

geometry with GSF
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Diffeological spaces and generalized maps

A diffeological space is a concrete sheaf on the concrete (Souriau) site
of smooth functions. Generalized diffeological space := a concrete
sheaf on the concrete site (ρGℓ∞, Γ)

Find a characterization of concrete sheaves over (ρGℓ∞, Γ) with the
main aim of arriving at conditions as close as possible to the usual
definition of diffeological space, but using strongly internal sets, GSF
and their sheaf property (with DCC)

Understand generalized maps between generalized diffeological spaces

Prove that diffeological spaces are included in the topos ρTGC∞:
Since the Souriau site S ⊆ ρSGC∞ ⊆ ρTGC∞, prove that also
Man ⊆ Diff ⊆ ρTGC∞
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Extending diffeological spaces with non-Archimedean points

Exactly as ρR̃ is obtained extending R by adding new non-Archimedean
points, define an extension functor X ∈ Diff 7→ X̃ ∈ ρTGC∞ and prove that
X̃ is a generalized diffeological space

Why extension is important: δ|R = 0, (δ ◦ δ) |R = δ(0), H|R does not satisfy
the intermediate value theorem...

Without considering non-Archimedean points we trivialize everything

Ideas for extension functors:
1 X̃ := colimU∈S/X ⟨U⟩, where ⟨U⟩ ⊆ ρR̃u is the strongly internal set

generated by the open set U ⊆ Ru and the colimit is taken in ρTGC∞

2 By observables: We say that a net (xε) ∈ X I is moderate
(resp. negligible) if for all f ∈ Diff(U,Rd) such that xε ∈ U ⊆ X for ε
small, U open in the D-topology, we have f ◦ x is moderate
(resp. negligible) in ρR̃d
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Preservation properties of these extension functors

Study the preservation properties of the extension functor
X ∈ Diff 7→ X̃ ∈ ρTGC∞:

counter-image and image:
(

f̃
)−1

(Ũ) = ˜f −1(U) and
(

f̃
)

(Ũ) = f̃ (U)
for f ∈ Diff
intersections and unions: Ũ ∩ V = Ũ ∩ Ṽ ,

⋃̃
i∈I Ui =

⋃
i∈I Ũi

complements: X̃ \ U = X̃ \ Ũ or ˜int (X \ U) = int
(

X̃ \ Ũ
)

subspaces, quotients and products
exponential objects

Can we construct a standard part functor (−)◦ : ρTGC∞ −→ Diff at
least for suitable near-standard subspaces (see e.g. Wu “The Fermat
functors”, TAC, 2016)?
Recall:

(
ρR̃n

)•
= {[xε] ∈ ρR̃n | ∃ limε→0+ xε =: [xε]◦ ∈ Rn} and not

all generalized points have a standard part
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Shimakawa homotopy theory with GSF

1 Can we realize Shimakawa’s program of differential homotopy theory
using GSF and ρTGC∞?

2 Prove that there exists a GSF diffeomorphism between the n-cube
[0, 1]n, n-simplex ∆n and n-ball Bn in ρR̃n

3 We already obtain a GSF diffeomorphism P : B1(0) −−→∼ [0, 1]2

between the closed ball B1(0) ⊆ ρR̃2 and the 2-cube defined by
[0, 1] =

{
x ∈ ρR̃ | 0 ≤ x ≤ 1

}
; moreover,

P|BE
1 (0,0) : BE

1 (0) −−→∼ [0, 1]2R, where [0, 1]R := {x ∈ R | 0 ≤ x ≤ 1}

4 Generalize homotopy theory of diffeological spaces using GSF
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Synthetic Differential Geometry

Synthetic Differential Geometry (SDG) uses a non-Archimedean language of
nilpotent infinitesimals (h ̸= 0 but hn = 0) to formalize the coordinate-free
notions of differential geometry as originally developed by S. Lie, E. Cartan,
H.G. Grassmann

See Kock 1981 (2nd ed. 2006), Lavendhomme 1996, Moerdijk-Reyes 1990
(need topos model in intuitionistic logic), but also Giordano, Wu papers
about “Fermat reals” in classical logic

In SDG, one can synthetically consider tangent vectors and tangent
modules, vector fields, existence and uniqueness of infinitesimal integral
curves of a given vector field, Lie brackets, differential forms and their
properties, infinitesimal Stokes theorem, de Rham currents, connections,
parallel transport, curvature, etc. in smooth M ∈ Man but also in spaces of
smooth mappings Man(N,M)
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Generalized Synthetic Differential Geometry

We can introduce a language of nilpotent infinitesimals also in ρR̃: we say
that x =j y (x is equal to y up to j-th order infinitesimals, j ∈ R>0) if

|xε − yε| = O(ρ
1
j
ε )

If k ∈ N>0, we set Dkj :=
{

h ∈ ρR̃ | hk+1 =j 0
}

, the set of k-th order
infinitesimals for the equality =j , and
D∞j :=

{
h ∈ ρR̃ | ∃k ∈ N>0 : hk+1 =j 0

}
, the set of infinitesimals for the

equality =j

If
(
∀0j ∈ R>0 : x =j y

)
, then x = y

For all j ∈ R>0, n ∈ N>0 there exist e ∈ R>0 such that e ≤ j , and
∀h ∈ Dne : f (x + h) =j

∑n
r=0

f (r)(x)
r ! hr . Using nilpotent infinitesimals every

GSF is equals to its Taylor formula without remainder
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Ideas for Generalized SDG

A tangent vector at x ∈ X for =j is an arrow of ρTGC∞ of the form t : D1j −→ X
such that t(0) = x , intuitively an infinitesimal generalized linear line traced on X
at x

The product r · t by a finite scalar r ∈ ρR̃ is always defined by (r · t)(h) := t(r · h).
A vector field is a tangent vector V : D1j −→ X̃ X̃ = ρTGC∞(X̃ , X̃) at the identify
1X̃ : X̃ −→ X̃ or, equivalently, a V ∨ : X̃ −→ X̃ D1j such that V ∨(x) is a tangent
vector at x
An infinitesimal linear space X ∈ ρTGC∞ is a space such that for all x ∈ X and
n ∈ N>0 tangent vectors t1, . . . , tn at x , there exists one and only one generalized
function p : Dn

1j −→ X such that p(0, i−1. . . . . . , 0, h, 0, . . . , 0) = ti (h) for all h ∈ D1j

This (infinitesimal, synthetic) condition permits one to define the sum of two
tangent vectors t1, t2 ∈ Tx X as (t1 + t2)(h) := p(h, h), i.e. as the diagonal of the
infinitesimal parallelogram generated by t1, t2

Infinitesimally linear spaces always include manifolds M̃ and generalized spaces of
the form ρTGC∞(M̃, Ñ)
Differential forms are generalized infinitesimal p-vectors (Grassmann’s notion) at
x ∈ X
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Contacts and references

References:

www.mat.univie.ac.at/~giordap7/

Contact:

paolo.giordano@univie.ac.at

Thank you for your attention!
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