Projective Space and Line Bundles in Synthetic Algebraic Geometry

Matthias Ritter, formerly **Hutzler** j.w.w. Felix Cherubini, Thierry Coquand, David Wärn

Toposes in Mondovì, 2024

In this talk:

- SAG at a glance
- ightharpoonup projective space \mathbb{P}^n
- ▶ line bundles, Pic(X)
- ightharpoonup classification of line bundles on \mathbb{P}^n
 - ightharpoonup application to $\operatorname{Aut}(\mathbb{P}^n)$

All results are well-known in (external) algebraic geometry, but we present new, synthetic proofs using higher types.

Synthetic algebraic geometry

$$k\text{-Sch}_{f.p.}$$
 \hookrightarrow $\operatorname{Zar}_k := \operatorname{Sh}(k\text{-Alg}_{f.p.})^{\operatorname{op}}, J_{\operatorname{Zar}}$

Synthetic algebraic geometry

$$k\operatorname{-Sch}_{\mathrm{f.p.}} \ \hookrightarrow \ \operatorname{Zar}_k := \operatorname{Sh}(k\operatorname{-Alg}_{\mathrm{f.p.}})^{\mathrm{op}}, J_{\mathrm{Zar}}$$

We interpret HoTT internally in $\operatorname{Zar}_k^{(\infty,1)}$ and write R for the *structure sheaf*:

$$k ext{-}\mathrm{Alg}_{\mathrm{f.p.}} o \mathrm{Set}$$

$$A \mapsto A$$

Synthetic algebraic geometry

$$k ext{-Sch}_{\text{f.p.}} \hookrightarrow \operatorname{Zar}_k := \operatorname{Sh}(k ext{-Alg}_{\text{f.p.}}^{\text{op}}, J_{\operatorname{Zar}})$$

We interpret HoTT internally in $\operatorname{Zar}_k^{(\infty,1)}$ and write R for the structure sheaf:

$$k ext{-}\mathrm{Alg}_{\mathrm{f.p.}} o \mathrm{Set}$$

$$A \mapsto A$$

- R is a ring.
- Every x : R with $x \neq 0$ is invertible.
 - But we don't have $x = 0 \lor x \neq 0$.
- Every $x: R^n$ with $x \neq 0$ generates a sub-module $\langle x \rangle \subseteq R^n$ with $\langle x \rangle \cong R^1$.

(internally in $Z\!\mathrm{ar}$

- Every function $f: R \to R$ is a polynomial.
 - ▶ But we can't determine deg(f): N.
- ► Every function $R^m \to R^n$ is given by n polynomials in m variables.

Key features of HoTT (homotopy type theory)

- ightharpoonup A type X can be a proposition, set, groupoid, 2-groupoid, ...
- We can form the *truncations* $||X|| = ||X||_{\text{prop}}$, $||X||_{\text{set}}$, $||X||_{\text{grpd}}$, . . .
- ▶ $\prod_{x:X} Y(x)$ generalizes " $\forall x \in X. Y(x)$ ".
- ▶ $\sum_{x \in X} Y(x)$ generalizes " $\{x \in X \mid Y(x)\}$ ".
- lsomorphisms $X \cong Y$ are the same as identifications X = Y.

(internally in Zar)

affine space $\mathbb{A}^n := \mathbb{R}^n$

affine space
$$\mathbb{A}^n := R^n$$
 projective space $\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} \|L \cong R^1\|$

affine space
$$\mathbb{A}^n := R^n$$
projective space $\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} \|L \cong R^1\|$

Grassmannian
$$\mathbb{G}_k(R^n) := \sum_{P \subseteq R^n \text{ sub-module}} \lVert P \cong R^k \rVert$$

affine space
$$\mathbb{A}^n \coloneqq R^n$$
projective space $\mathbb{P}^n \coloneqq \sum_{\substack{L \subseteq R^{n+1} \text{ sub-module} \\ = \mathbb{G}_1(R^{n+1})}} \|L \cong R^1\|$
Grassmannian $\mathbb{G}_k(R^n) \coloneqq \sum_{\substack{P \subseteq R^n \text{ sub-module}}} \|P \cong R^k\|$

(internally in Zar)

Let $p, p' : \mathbb{P}^n$ with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$.

(internally in Zar)

Let $p, p' : \mathbb{P}^n$ with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$. Fact: $\|\langle p, p' \rangle \cong R^2 \|$

Let $p, p' : \mathbb{P}^n$ with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$.

Fact: $\|\langle p, p' \rangle \cong R^2 \|$

So we have

$$\mathbb{G}_1(\langle p,p'
angle)\subseteq \mathbb{P}^n$$

with

$$\|\mathbb{G}_1(\langle p,p'\rangle)=\mathbb{P}^1\|.$$

Let $p, p' : \mathbb{P}^n$ with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$.

Fact: $\|\langle p, p' \rangle \cong R^2 \|$

So we have

$$\mathbb{G}_1(\langle p,p'
angle)\subseteq \mathbb{P}^n$$

with

$$\|\mathbb{G}_1(\langle
ho,
ho'
angle)=\mathbb{P}^1\|.$$

We say: $\mathbb{G}_1(\langle p, p' \rangle)$ is the "line" interpolating between p and p'.

(internally in $Z_{
m ar}$

Proposition

All functions $\mathbb{P}^n \to R$ are constant.

(internally in $Z_{
m ar}$

Proposition

All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

(internally in Z_{ar})

Proposition

All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case $n \ge 2$:

(internally in $Z_{
m ar}$)

Proposition

All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case $n \ge 2$:

Let $f: \mathbb{P}^n \to R$ be given.

Proposition

All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case n > 2:

Let $f: \mathbb{P}^n \to R$ be given.

For $p, p' : \mathbb{P}^n$ with $p \neq p'$ we have $\|\mathbb{G}_1(\langle p, p' \rangle) = \mathbb{P}^1\|$.

Proposition

All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case n > 2:

Let $f: \mathbb{P}^n \to R$ be given.

For $p,p':\mathbb{P}^n$ with $p\neq p'$ we have $\|\mathbb{G}_1(\langle p,p'\rangle)=\mathbb{P}^1\|$.

So $f|_{\mathbb{G}_1(\langle p,p'\rangle)}$ must be constant (by case n=1).

Proposition

All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case n > 2:

Let $f: \mathbb{P}^n \to R$ be given.

For $p,p':\mathbb{P}^n$ with $p\neq p'$ we have $\|\mathbb{G}_1(\langle p,p'\rangle)=\mathbb{P}^1\|$.

So $f|_{\mathbb{G}_1(\langle p,p'\rangle)}$ must be constant (by case n=1).

In particular: $p \neq p' \rightarrow f(p) = f(p')$

Proposition

All functions $\mathbb{P}^n \to R$ are constant.

Case n = 1: Omitted.

Case n > 2:

Let $f: \mathbb{P}^n \to R$ be given.

For $p, p' : \mathbb{P}^n$ with $p \neq p'$ we have $\|\mathbb{G}_1(\langle p, p' \rangle) = \mathbb{P}^1\|$. So $f|_{\mathbb{G}_1(\langle p, p' \rangle)}$ must be constant (by case n = 1).

In particular: $p \neq p' \rightarrow f(p) = f(p')$

Fix $p_0 \neq p_1$. Then:

$$p \neq p_0 \quad \lor \quad p \neq p_1$$
 $f(p) = f(p_0) \quad \lor \quad f(p) = f(p_1) = f(p_0)$

The following is true for any ring R.

 $-\otimes -: R\operatorname{-Mod} \times R\operatorname{-Mod} \to R\operatorname{-Mod}$

The following is true for any ring R.

$$-\otimes -: R\operatorname{-Mod} \times R\operatorname{-Mod} \to R\operatorname{-Mod}$$

$$R^1 \otimes M \cong M$$

$$R^1\otimes R^1\cong R^1$$

The following is true for any ring R.

$$-\otimes -: R\operatorname{-Mod} \times R\operatorname{-Mod} \to R\operatorname{-Mod}$$

$$R^1 \otimes M \cong M$$

$$R^1\otimes R^1\cong R^1$$

The dual module of M is

$$M^{\vee} := \operatorname{Hom}(M, R^1).$$

The following is true for any ring R.

$$-\otimes -: R\operatorname{-Mod} \times R\operatorname{-Mod} \to R\operatorname{-Mod}$$

$$R^1 \otimes M \cong M$$

$$R^1\otimes R^1\cong R^1$$

The dual module of M is

$$M^{\vee} := \mathrm{Hom}(M, R^1).$$

$$R^{1} \cong R^{1}$$

The following is true for any ring R.

$$-\otimes -: R\operatorname{-Mod} \times R\operatorname{-Mod} \to R\operatorname{-Mod}$$

$$R^1 \otimes M \cong M$$
$$R^1 \otimes R^1 \cong R^1$$

The dual module of M is

$$M^{\vee} := \operatorname{Hom}(M, R^1).$$

$$R^{1^{\vee}} \cong R^1$$

$$M \otimes M^{\vee} \to R^1$$
$$R^1 \otimes R^{1}^{\vee} \xrightarrow{\sim} R^1$$

(internally in
$$Zar$$
)

$$\sum_{L:R\text{-}\mathrm{Mod}} \lVert L \cong R^1 \rVert$$

$$\sum_{L:R\text{-}\mathrm{Mod}} \|L \cong R^1\|$$

Is pointed (by R^1), connected, has loop space $\operatorname{Aut}(R^1) \cong R^{\times}$.

$$BR^\times := \sum_{L:R\text{-}\mathrm{Mod}} \lVert L \cong R^1 \rVert$$

Is pointed (by R^1), connected, has loop space $\operatorname{Aut}(R^1) \cong R^{\times}$.

$$BR^{\times} := \sum_{L:R\text{-Mod}} ||L \cong R^1||$$

Is pointed (by R^1), connected, has loop space $\operatorname{Aut}(R^1) \cong R^{\times}$.

We have operations

$$- \otimes - : BR^{\times} \times BR^{\times} \to BR^{\times}$$

 $-^{\vee} : BR^{\times} \to BR^{\times}$

$$BR^{\times} := \sum_{L:R\text{-Mod}} \|L \cong R^1\|$$

Is pointed (by R^1), connected, has loop space $\operatorname{Aut}(R^1) \cong R^{\times}$.

We have operations

$$-\otimes -: BR^{\times} \times BR^{\times} \to BR^{\times}$$

 $-^{\vee}: BR^{\times} \to BR^{\times}$

with:

$$R^1 \otimes L = L$$
$$I \otimes I^{\vee} = R^1$$

Definition

A line bundle on X is a map $X \to BR^{\times}$.

Definition

A line bundle on X is a map $X \to BR^{\times}$.

We always have the *trivial* line bundle $X \to BR^{\times}$, $x \mapsto R^1$.

Definition

A line bundle on X is a map $X \to BR^{\times}$.

We always have the *trivial* line bundle $X \to BR^{\times}$, $x \mapsto R^1$. We have pointwise operations $-\otimes -$ and $-^{\vee}$ on $X \to BR^{\times}$.

Definition

A line bundle on X is a map $X \to BR^{\times}$.

We always have the *trivial* line bundle $X \to BR^{\times}$, $x \mapsto R^1$. We have pointwise operations $-\otimes -$ and $-^{\vee}$ on $X \to BR^{\times}$.

Definition

The Picard group of X is

$$\operatorname{Pic}(X) := \|X \to BR^{\times}\|_{\mathsf{set}}.$$

(internally in
$$Z_{
m ar}$$

$$\mathsf{Recall:} \ \mathbb{P}^n \coloneqq \sum_{L \subseteq R^{n+1} \ \mathsf{sub-module}} \|L \cong R^1\|$$

The tautological line bundle on \mathbb{P}^n is:

$$\mathcal{O}(-1): \mathbb{P}^n \to BR^{\times}$$

 $L \mapsto L$

(internally in
$$Z_{
m ar}$$

Recall:
$$\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} \|L \cong R^1\|$$

The tautological line bundle on \mathbb{P}^n is:

$$\mathcal{O}(-1): \mathbb{P}^n \to BR^{\times}$$
 $L \mapsto L$

Define $\mathcal{O}(d) \coloneqq \mathcal{O}(-1)^{\otimes -d}$ for every $d : \mathbb{Z}$.

(internally in
$$Z_{
m ar}$$

Recall:
$$\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} \|L \cong R^1\|$$

The tautological line bundle on \mathbb{P}^n is:

$$\mathcal{O}(-1): \mathbb{P}^n \to BR^{\times}$$
$$L \mapsto L$$

Define $\mathcal{O}(d) \coloneqq \mathcal{O}(-1)^{\otimes -d}$ for every $d : \mathbb{Z}$.

Fact: $\mathcal{O}(-): \mathbb{Z} \to \operatorname{Pic}(\mathbb{P}^n)$ is injective.

$$\mathsf{Recall:} \ \mathbb{P}^n \coloneqq \sum_{L \subseteq R^{n+1} \ \mathsf{sub-module}} \|L \cong R^1\|$$

The tautological line bundle on \mathbb{P}^n is:

$$\mathcal{O}(-1): \mathbb{P}^n \to BR^{\times}$$

 $L \mapsto L$

Define $\mathcal{O}(d) := \mathcal{O}(-1)^{\otimes -d}$ for every $d : \mathbb{Z}$.

Fact: $\mathcal{O}(-): \mathbb{Z} \to \operatorname{Pic}(\mathbb{P}^n)$ is injective.

Q: Are there other line bundles on \mathbb{P}^n ?

Theorem

For every line bundle $L: \mathbb{P}^n \to BR^{\times}$ there is a number $d: \mathbb{Z}$ such that $\|L = \mathcal{O}(d)\|$. Thus:

$$\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \operatorname{Pic}(\mathbb{P}^n).$$

Theorem

For every line bundle $L: \mathbb{P}^n \to BR^{\times}$ there is a number $d: \mathbb{Z}$ such that $\|L = \mathcal{O}(d)\|$. Thus:

$$\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \mathrm{Pic}(\mathbb{P}^n).$$

Notation: deg(L) := d

Theorem

For every line bundle $L: \mathbb{P}^n \to BR^{\times}$ there is a number $d: \mathbb{Z}$ such that $\|L = \mathcal{O}(d)\|$. Thus:

$$\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \mathrm{Pic}(\mathbb{P}^n).$$

Notation: deg(L) := d

Case n = 1: Needs non-trivial algebra (Horrocks' theorem).

$$\operatorname{Pic}(\mathbb{P}^n) = \mathbb{Z}$$

Theorem

For every line bundle $L: \mathbb{P}^n \to BR^{\times}$ there is a number $d: \mathbb{Z}$ such that $\|L = \mathcal{O}(d)\|$. Thus:

$$\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \mathrm{Pic}(\mathbb{P}^n).$$

Notation: deg(L) := d

Case n = 1: Needs non-trivial algebra (Horrocks' theorem).

Plan for $n \ge 2$:

- ▶ Strengthen the n = 1 case to a non-truncated statement.
- ▶ Adjust *L* so that we can expect $||L = \mathcal{O}(0)||$.
- Use interpolation.

ightharpoonup Strengthen the n=1 case to a non-truncated statement.

(internally in
$$Z_{
m ar}$$

ightharpoonup Strengthen the n=1 case to a non-truncated statement.

$$\begin{array}{ccc} \mathbb{Z} & \xrightarrow{\sim} & \|\mathbb{P}^1 \to BR^{\times}\|_{\mathrm{set}} \\ d & \mapsto & |\mathcal{O}(d)| \end{array}$$

(internally in
$$Z_{
m ar}$$

ightharpoonup Strengthen the n=1 case to a non-truncated statement.

$$\begin{array}{ccc} \mathbb{Z} & \xrightarrow{\sim} & \|\mathbb{P}^1 \to BR^{\times}\|_{\mathrm{set}} \\ d & \mapsto & |\mathcal{O}(d)| \end{array}$$

Fact: Any line bundle $L:\mathbb{P}^1\to BR^{\times}$ has the same automorphism group $(L=L)\cong R^{\times}.$

(internally in
$$Z_{
m ar}$$
)

ightharpoonup Strengthen the n=1 case to a non-truncated statement.

$$\mathbb{Z} \quad \stackrel{\sim}{\to} \quad \|\mathbb{P}^1 \to BR^{\times}\|_{\text{set}}
d \quad \mapsto \quad |\mathcal{O}(d)|$$

Fact: Any line bundle $L: \mathbb{P}^1 \to BR^{\times}$ has the same automorphism group $(L=L) \cong R^{\times}$.

$$\begin{array}{ccc} \mathbb{Z} \times BR^{\times} & \stackrel{\sim}{\to} & (\mathbb{P}^1 \to BR^{\times}) \\ (d, L) & \mapsto & L \otimes \mathcal{O}(d) \end{array}$$

$$\operatorname{Pic}(\mathbb{P}^n) = \mathbb{Z}$$

ightharpoonup Strengthen the n=1 case to a non-truncated statement.

$$\begin{array}{ccc} \mathbb{Z} & \xrightarrow{\sim} & \|\mathbb{P}^1 \to BR^{\times}\|_{\mathrm{set}} \\ d & \mapsto & |\mathcal{O}(d)| \end{array}$$

Fact: Any line bundle $L: \mathbb{P}^1 \to BR^{\times}$ has the same automorphism group $(L=L) \cong R^{\times}$.

$$\begin{array}{ccc} \mathbb{Z} \times \textit{BR}^{\times} & \stackrel{\sim}{\to} & (\mathbb{P}^1 \to \textit{BR}^{\times}) \\ (\textit{d},\textit{L}) & \mapsto & \textit{L} \otimes \mathcal{O}(\textit{d}) \end{array}$$

Corollary: If $\deg(L) = 0$ then we have $\prod_{p,p':\mathbb{P}^1} L(p) = L(p')$.

(internally in
$$Zar$$
)

▶ Adjust *L* so that we can expect $||L = \mathcal{O}(0)||$.

▶ Adjust *L* so that we can expect $||L = \mathcal{O}(0)||$.

Fix a standard plane $P_0: \mathbb{G}_2(R^{n+1})$. Consider $\deg(L|_{\mathbb{G}_1(P_0)}): \mathbb{Z}$.

▶ Adjust *L* so that we can expect $||L = \mathcal{O}(0)||$.

Fix a standard plane $P_0: \mathbb{G}_2(R^{n+1})$. Consider $\deg(L|_{\mathbb{G}_1(P_0)}): \mathbb{Z}$.

We can arrange $\deg(L|_{\mathbb{G}_1(P_0)})=0$ by replacing L with some $L\otimes \mathcal{O}(d)$.

▶ Adjust *L* so that we can expect $||L = \mathcal{O}(0)||$.

Fix a standard plane $P_0: \mathbb{G}_2(R^{n+1})$. Consider $\deg(L|_{\mathbb{G}_1(P_0)}): \mathbb{Z}$.

We can arrange $\deg(L|_{\mathbb{G}_1(P_0)})=0$ by replacing L with some $L\otimes\mathcal{O}(d)$.

Fact: $\mathbb{G}_2(\mathbb{R}^{n+1})$ is indecomposable.

Adjust L so that we can expect $||L = \mathcal{O}(0)||$.

Fix a standard plane $P_0: \mathbb{G}_2(R^{n+1})$. Consider $\deg(L|_{\mathbb{G}_1(P_0)}): \mathbb{Z}$.

We can arrange $\deg(L|_{\mathbb{G}_1(P_0)})=0$ by replacing L with some $L\otimes \mathcal{O}(d)$.

Fact: $\mathbb{G}_2(\mathbb{R}^{n+1})$ is indecomposable.

So $\deg(L|_{\mathbb{G}_1(P)}) = 0$ for every plane $P : \mathbb{G}_2(R^{n+1})$.

▶ Adjust *L* so that we can expect $||L = \mathcal{O}(0)||$.

Fix a standard plane $P_0: \mathbb{G}_2(R^{n+1})$. Consider $\deg(L|_{\mathbb{G}_1(P_0)}): \mathbb{Z}$.

We can arrange $\deg(L|_{\mathbb{G}_1(P_0)})=0$ by replacing L with some $L\otimes\mathcal{O}(d)$.

Fact: $\mathbb{G}_2(\mathbb{R}^{n+1})$ is indecomposable.

So $\deg(L|_{\mathbb{G}_1(P)}) = 0$ for every plane $P : \mathbb{G}_2(R^{n+1})$.

Thus: L(p) = L(p') for all p, p' on $\mathbb{G}_1(P)$.

(internally in Z_{ar})

Use interpolation.

(internally in $Z_{
m ar}$)

Use interpolation.

For $p \neq p'$ in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p' \rangle)}) = 0$, so:

$$\operatorname{Pic}(\mathbb{P}^n)=\mathbb{Z}$$

(internally in $Z_{
m ar}$)

Use interpolation.

For $p \neq p'$ in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p' \rangle)}) = 0$, so:

$$p \neq p' \quad \rightarrow \quad L(p) = L(p')$$

For $p \neq p'$ in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:

$$p \neq p' \quad \rightarrow \quad L(p) = L(p')$$

Fix standard points $p_0, p_1 : \mathbb{P}^n$.

$$L = \operatorname{const} L(p_0) \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$$

 $L = \operatorname{const} L(p_1) \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

For $p \neq p'$ in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:

$$p \neq p' \quad \rightarrow \quad L(p) = L(p')$$

Fix standard points $p_0, p_1 : \mathbb{P}^n$ and paths $L(p_0) = R^1$, $L(p_1) = R^1$.

$$L = \operatorname{const} L(p_0) \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$$

 $L = \operatorname{const} L(p_1) \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

$$\operatorname{Pic}(\mathbb{P}^n)=\mathbb{Z}$$

(internally in $Z_{
m ar}$

Use interpolation.

For $p \neq p'$ in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:

$$p \neq p' \rightarrow L(p) = L(p')$$

Fix standard points $p_0, p_1 : \mathbb{P}^n$ and paths $L(p_0) = R^1$, $L(p_1) = R^1$.

$$L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$$

 $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

For $p \neq p'$ in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:

$$p \neq p' \quad \rightarrow \quad L(p) = L(p')$$

Fix standard points $p_0, p_1 : \mathbb{P}^n$ and paths $L(p_0) = R^1$, $L(p_1) = R^1$.

$$L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$$

 $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

For $p : \mathbb{P}^n \setminus \{p_0, p_1\}$ we have *two* identifications:

$$R^1 = L(p) = R^1$$

For $p \neq p'$ in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:

$$p \neq p' \rightarrow L(p) = L(p')$$

Fix standard points $p_0, p_1 : \mathbb{P}^n$ and paths $L(p_0) = R^1$, $L(p_1) = R^1$.

$$L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$$

 $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

For $p : \mathbb{P}^n \setminus \{p_0, p_1\}$ we have *two* identifications:

$$R^1 = L(p) = R^1$$

Fact: Every function $\mathbb{P}^n \setminus \{p_0, p_1\} \to R^{\times}$ is constant.

$$\operatorname{Pic}(\mathbb{P}^n) = \mathbb{Z}$$

For $p \neq p'$ in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:

$$p
eq p' \quad o \quad L(p) = L(p')$$

Fix standard points $p_0, p_1 : \mathbb{P}^n$ and paths $L(p_0) = R^1$, $L(p_1) = R^1$.

$$L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_0\}$$

 $L = \operatorname{const} R^1 \quad \text{on } \mathbb{P}^n \setminus \{p_1\}$

For $p : \mathbb{P}^n \setminus \{p_0, p_1\}$ we have *two* identifications:

$$R^1 = L(p) = R^1$$

Fact: Every function $\mathbb{P}^n \setminus \{p_0, p_1\} \to R^{\times}$ is constant.

So we conclude: $L = \mathcal{O}(0)$.

Recall: Every function $R^m \to R^n$ is given by n polynomials in m variables.

Recall: Every function $R^m \to R^n$ is given by n polynomials in m variables.

Theorem

Every function $f: \mathbb{P}^m \to \mathbb{P}^n$ is given by n+1 homogeneous polynomials of some degree d in m+1 variables.

Recall: Every function $R^m \to R^n$ is given by n polynomials in m variables.

Theorem

Every function $f: \mathbb{P}^m \to \mathbb{P}^n$ is given by n+1 homogeneous polynomials of some degree d in m+1 variables.

Core step: $d := \deg(\mathcal{O}(1) \circ f)$

Recall: Every function $R^m \to R^n$ is given by n polynomials in m variables.

Theorem

Every function $f: \mathbb{P}^m \to \mathbb{P}^n$ is given by n+1 homogeneous polynomials of some degree d in m+1 variables.

Core step: $d \coloneqq \deg(\mathcal{O}(1) \circ f)$

Corollary

Every automorphism $\mathbb{P}^n \xrightarrow{\sim} \mathbb{P}^n$ is given by an invertible matrix, unique up to scalar multiplication.

$$\operatorname{Aut}(\mathbb{P}^n) \cong \operatorname{PGL}_{n+1}(R)$$