Projective Space and Line Bundles in Synthetic Algebraic Geometry

Matthias Ritter, formerly Hutzler j.w.w. Felix Cherubini, Thierry Coquand, David Wärn

Toposes in Mondovì, 2024

Licensed under [CC BY 4.0.](https://creativecommons.org/licenses/by/4.0/)

In this talk:

- ▶ SAG at a glance
- P projective space \mathbb{P}^n
- \blacktriangleright line bundles, $\text{Pic}(X)$
- \blacktriangleright classification of line bundles on \mathbb{P}^n
- ▶ application to $\text{Aut}(\mathbb{P}^n)$

All results are well-known in (external) algebraic geometry, but we present new, synthetic proofs using higher types.

Synthetic algebraic geometry

$$
k\text{-Sch}_{f.p.} \quad \hookrightarrow \quad \text{Zar}_k := \text{Sh}(k\text{-}\text{Alg}_{f.p.}^{\text{op}}, J_{\text{Zar}})
$$

Synthetic algebraic geometry

$$
k\text{-Sch}_{f.p.} \quad \hookrightarrow \quad \text{Zar}_k := \text{Sh}(k\text{-}\text{Alg}_{f.p.}^{\text{op}}, J_{\text{Zar}})
$$

We interpret HoTT internally in $\operatorname{Zar}_k^{(\infty,1)}$ and write R for the structure sheaf:

$$
k\text{-}\mathrm{Alg}_{f.p.} \to \mathrm{Set}
$$

$$
A \mapsto A
$$

Synthetic algebraic geometry

$$
k\text{-Sch}_{f.p.} \quad \hookrightarrow \quad \text{Zar}_k := \text{Sh}(k\text{-Alg}_{f.p.}^{\text{op}}, J_{\text{Zar}})
$$

We interpret HoTT internally in $\operatorname{Zar}_k^{(\infty,1)}$ and write R for the structure sheaf:

$$
k\text{-}\mathrm{Alg}_{f.p.} \to \mathrm{Set}
$$

$$
A \mapsto A
$$

 \blacktriangleright R is a ring.

- ▶ Every $x : R$ with $x \neq 0$ is invertible.
	- ▶ But we don't have $x = 0 \vee x \neq 0.$
- Every $x : R^n$ with $x \neq 0$ generates a sub-module $\langle x \rangle \subseteq R^n$ with $\langle x \rangle \cong R^1$.

- ▶ Every function $f: R \rightarrow R$ is a polynomial.
	- \blacktriangleright But we can't determine $\deg(f) : \mathbb{N}.$
- Every function $R^m \to R^n$ is given by n polynomials in m variables.

Key features of HoTT (homotopy type theory)

- \triangleright A type X can be a proposition, set, groupoid, 2 -groupoid, ...
- ▶ We can form the *truncations* $||X|| = ||X||_{\text{proof}}$, $||X||_{\text{set}}$, $||X||_{\text{grnd}}$, ...
- ▶ $\prod_{x:X} Y(x)$ generalizes "∀ $x \in X$. $Y(x)$ ".
- $\blacktriangleright \sum_{x:X} Y(x)$ generalizes "{ $x \in X \mid Y(x)$ }".
- ▶ Isomorphisms $X \cong Y$ are the same as identifications $X = Y$.

affine space $\mathbb{A}^n := R^n$

affine space
$$
\mathbb{A}^n := R^n
$$

projective space $\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} ||L \cong R^1||$

affine space
$$
\mathbb{A}^n := R^n
$$

projective space $\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} ||L \cong R^1||$
Grassmannian $\mathbb{G}_k(R^n) := \sum ||P \cong R^k||$

 $P \subseteq R^n$ sub-module

affine space
$$
\mathbb{A}^n := R^n
$$

\nprojective space $\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}}$
\n $= \mathbb{G}_1(R^{n+1})$
\nGrassmannian $\mathbb{G}_k(R^n) := \sum_{P \subseteq R^n \text{ sub-module}}$
\n $\|P \cong R^k\|$

Let $p, p' : \mathbb{P}^n$ with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$.

Let $p, p' : \mathbb{P}^n$ with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$. Fact: $\|\langle p, p' \rangle \cong R^2 \|$

Let $p, p' : \mathbb{P}^n$ with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$. Fact: $\|\langle p, p' \rangle \cong R^2 \|$

So we have

 $\mathbb{G}_1(\langle \rho,\rho'\rangle)\subseteq \mathbb{P}^n$

with

 $\|\mathbb{G}_1(\langle p,p'\rangle)=\mathbb{P}^1\|.$

Let $p, p' : \mathbb{P}^n$ with $p \neq p'$.

Consider the sub-module $\langle p, p' \rangle \subseteq R^{n+1}$. Fact: $\|\langle p, p' \rangle \cong R^2 \|$

So we have

$$
\mathbb{G}_1(\langle \rho,\rho'\rangle)\subseteq \mathbb{P}^n
$$

with

$$
\|\mathbb{G}_1(\langle \rho,\rho'\rangle)=\mathbb{P}^1\|.
$$

We say: $\mathbb{G}_1(\langle p,p' \rangle)$ is the "line" interpolating between p and p' .

Case $n = 1$: Omitted.

Case $n = 1$: Omitted.

Case $n > 2$:

Case $n = 1$: Omitted.

Case $n > 2$:

Let $f: \mathbb{P}^n \to R$ be given.

Case $n = 1$: Omitted.

Case $n > 2$:

Let $f: \mathbb{P}^n \to R$ be given. For $p, p' : \mathbb{P}^n$ with $p \neq p'$ we have $\|\mathbb{G}_1(\langle p, p'\rangle) = \mathbb{P}^1\|.$

Case $n = 1$: Omitted.

Case $n > 2$:

Let $f: \mathbb{P}^n \to R$ be given. For $p, p' : \mathbb{P}^n$ with $p \neq p'$ we have $\|\mathbb{G}_1(\langle p, p'\rangle) = \mathbb{P}^1\|.$ So $f|_{\mathbb{G}_{1}(\langle p,p'\rangle)}$ must be constant (by case $n=1).$

Case $n = 1$: Omitted.

Case $n > 2$:

Let $f: \mathbb{P}^n \to R$ be given. For $p, p' : \mathbb{P}^n$ with $p \neq p'$ we have $\|\mathbb{G}_1(\langle p, p'\rangle) = \mathbb{P}^1\|.$ So $f|_{\mathbb{G}_{1}(\langle p,p'\rangle)}$ must be constant (by case $n=1).$ In particular: $p \neq p' \rightarrow f(p) = f(p')$

Case $n = 1$: Omitted.

Case $n > 2$:

Let $f: \mathbb{P}^n \to R$ be given. For $p, p' : \mathbb{P}^n$ with $p \neq p'$ we have $\|\mathbb{G}_1(\langle p, p'\rangle) = \mathbb{P}^1\|.$ So $f|_{\mathbb{G}_{1}(\langle p,p'\rangle)}$ must be constant (by case $n=1).$ In particular: $p \neq p' \rightarrow f(p) = f(p')$

Fix $p_0 \neq p_1$. Then:

$$
p \neq p_0 \quad \lor \quad p \neq p_1
$$

$$
f(p) = f(p_0) \quad \lor \quad f(p) = f(p_1) = f(p_0)
$$

The following is true for any ring R.

 $-\otimes - : R\text{-Mod} \times R\text{-Mod} \to R\text{-Mod}$

The following is true for any ring R.

 $-\otimes - : R\text{-Mod} \times R\text{-Mod} \to R\text{-Mod}$

 $R^1\otimes M\cong M$ $R^1\otimes R^1\cong R^1$

The following is true for any ring R.

$$
-\otimes-: R\text{-Mod} \times R\text{-Mod} \to R\text{-Mod}
$$

 $R^1\otimes M\cong M$ $R^1\otimes R^1\cong R^1$

The dual module of M is

 $M^{\vee} := \text{Hom}(M, R^1).$

The following is true for any ring R.

$$
-\otimes-: R\text{-Mod} \times R\text{-Mod} \to R\text{-Mod}
$$

 $R^1\otimes M\cong M$ $R^1\otimes R^1\cong R^1$

The dual module of M is

 $M^{\vee} := \text{Hom}(M, R^1).$

$$
R^{1^{\vee}} \cong R^1
$$

The following is true for any ring R.

$$
-\otimes-: R\text{-Mod} \times R\text{-Mod} \to R\text{-Mod}
$$

 $R^1\otimes M\cong M$ $R^1\otimes R^1\cong R^1$

The dual module of M is

 $M^{\vee} := \text{Hom}(M, R^1).$

$$
R^{1^{\vee}}\cong R^1
$$

 $M\otimes M^\vee\to R^1$ $R^1\otimes R^{1\vee} \xrightarrow{\sim} R^1$

$$
\sum_{L:R\textrm{-}\mathrm{Mod}}\lVert L\cong R^1\rVert
$$

$$
\sum_{\text{$L:R$-Mod}}\|\text{$L\cong R^1$}\|
$$

$$
\mathit{BR}^\times \coloneqq \sum_{\mathit{L}: \mathit{R}\text{-}\mathrm{Mod}} \lVert \mathit{L} \cong \mathit{R}^1 \rVert
$$

$$
\mathit{BR}^\times \coloneqq \sum_{\mathit{L}: \mathit{R}\text{-}\mathrm{Mod}} \lVert \mathit{L} \cong \mathit{R}^1 \rVert
$$

We have operations

 $-\otimes -$: BR[×] × BR[×] → BR[×] $-^{\vee}$: BR[×] \rightarrow BR[×]

$$
\mathit{BR}^\times \coloneqq \sum_{\mathit{L}: \mathit{R}\text{-}\mathrm{Mod}} \lVert \mathit{L} \cong \mathit{R}^1 \rVert
$$

We have operations

with:

$$
- \otimes - :BR^{\times} \times BR^{\times} \to BR^{\times}
$$

$$
-^{\vee} : BR^{\times} \to BR^{\times}
$$

$$
R^1 \otimes L = L
$$

$$
L\otimes L^\vee=R^1
$$

Definition A line bundle on X is a map $X \rightarrow BR^{\times}$.

Definition A line bundle on X is a map $X \rightarrow BR^{\times}$.

We always have the *trivial* line bundle $X \to BR^\times,$ $x \mapsto R^1.$

Definition A line bundle on X is a map $X \to BR^\times$.

We always have the *trivial* line bundle $X \to BR^\times,$ $x \mapsto R^1.$ We have pointwise operations $-\otimes -$ and $-\vee$ on $X \to BR^{\times}$.

Definition A line bundle on X is a map $X \to BR^\times$.

We always have the *trivial* line bundle $X \to BR^\times,$ $x \mapsto R^1.$ We have pointwise operations $-\otimes -$ and $-\vee$ on $X \to BR^{\times}$.

Definition The *Picard group* of X is

$$
\mathrm{Pic}(X) \coloneqq \|X \to \mathcal{B}R^{\times}\|_{\mathsf{set}}.
$$

Recall:
$$
\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} ||L \cong R^1||
$$

The tautological line bundle on \mathbb{P}^n is:

$$
\mathcal{O}(-1): \mathbb{P}^n \to BR^\times
$$

$$
L \mapsto L
$$

Recall:
$$
\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} ||L \cong R^1||
$$

The tautological line bundle on \mathbb{P}^n is:

$$
\mathcal{O}(-1): \mathbb{P}^n \to BR^\times
$$

$$
L \mapsto L
$$

Define $\mathcal{O}(d) \coloneqq \mathcal{O}(-1)^{\otimes -d}$ for every $d : \mathbb{Z}.$

Recall:
$$
\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} ||L \cong R^1||
$$

The tautological line bundle on \mathbb{P}^n is:

$$
\mathcal{O}(-1): \mathbb{P}^n \to BR^\times
$$

$$
L \mapsto L
$$

Define $\mathcal{O}(d) \coloneqq \mathcal{O}(-1)^{\otimes -d}$ for every $d : \mathbb{Z}.$

Fact: $\mathcal{O}(-): \mathbb{Z} \to \mathrm{Pic}(\mathbb{P}^n)$ is injective.

Recall:
$$
\mathbb{P}^n := \sum_{L \subseteq R^{n+1} \text{ sub-module}} ||L \cong R^1||
$$

The tautological line bundle on \mathbb{P}^n is:

$$
\mathcal{O}(-1): \mathbb{P}^n \to BR^\times
$$

$$
L \mapsto L
$$

Define $\mathcal{O}(d) \coloneqq \mathcal{O}(-1)^{\otimes -d}$ for every $d : \mathbb{Z}.$

Fact: $\mathcal{O}(-): \mathbb{Z} \to \mathrm{Pic}(\mathbb{P}^n)$ is injective.

Q: Are there other line bundles on \mathbb{P}^n ?

Theorem

For every line bundle $L: \mathbb{P}^n \to BR^\times$ there is a number d : $\mathbb Z$ such that $||L = \mathcal{O}(d)||$. Thus:

$$
\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \mathrm{Pic}(\mathbb{P}^n).
$$

Theorem

For every line bundle $L: \mathbb{P}^n \to BR^\times$ there is a number d : $\mathbb Z$ such that $||L = \mathcal{O}(d)||$. Thus:

$$
\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \mathrm{Pic}(\mathbb{P}^n).
$$

Notation: $\deg(L) := d$

Theorem

For every line bundle $L: \mathbb{P}^n \to BR^\times$ there is a number d : $\mathbb Z$ such that $||L = \mathcal{O}(d)||$. Thus:

$$
\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \mathrm{Pic}(\mathbb{P}^n).
$$

Notation: $\deg(L) := d$

Case $n = 1$: Needs non-trivial algebra (Horrocks' theorem).

Theorem

For every line bundle $L: \mathbb{P}^n \to BR^\times$ there is a number d : $\mathbb Z$ such that $||L = \mathcal{O}(d)||$. Thus:

$$
\mathcal{O}(-): \mathbb{Z} \xrightarrow{\sim} \mathrm{Pic}(\mathbb{P}^n).
$$

Notation: $deg(L) := d$

Case $n = 1$: Needs non-trivial algebra (Horrocks' theorem).

Plan for $n > 2$:

- \triangleright Strengthen the $n = 1$ case to a non-truncated statement.
- Adjust L so that we can expect $||L = \mathcal{O}(0)||$.
- ▶ Use interpolation.

▶ Strengthen the $n = 1$ case to a non-truncated statement.

▶ Strengthen the $n = 1$ case to a non-truncated statement.

$$
\begin{array}{ccc}\mathbb{Z}&\stackrel{\sim}{\to}&\|\mathbb{P}^{1}\to BR^{\times}\|_{\text{set}}\\d&\mapsto&|\mathcal{O}(d)|\end{array}
$$

▶ Strengthen the $n = 1$ case to a non-truncated statement.

$$
\begin{array}{ccc}\mathbb{Z}&\stackrel{\sim}{\to}&\|\mathbb{P}^{1}\to BR^{\times}\|_{\text{set}}\\d&\mapsto&|\mathcal{O}(d)|\end{array}
$$

Fact: Any line bundle $L: \mathbb{P}^1 \to BR^\times$ has the same automorphism group $(L = L) \cong R^{\times}$.

▶ Strengthen the $n = 1$ case to a non-truncated statement.

$$
\begin{array}{ccc}\mathbb{Z}&\stackrel{\sim}{\to}&\|\mathbb{P}^{1}\to BR^{\times}\|_{\text{set}}\\d&\mapsto&|O(d)|\end{array}
$$

Fact: Any line bundle $L: \mathbb{P}^1 \to BR^\times$ has the same automorphism group $(L = L) \cong R^{\times}$.

$$
\begin{array}{ccc}\mathbb{Z}\times BR^{\times}&\stackrel{\sim}{\to}&(\mathbb{P}^{1}\to BR^{\times})\\(d,L)&\mapsto&L\otimes\mathcal{O}(d)\end{array}
$$

 \blacktriangleright Strengthen the $n = 1$ case to a non-truncated statement.

$$
\begin{array}{ccc}\mathbb{Z}&\stackrel{\sim}{\to}&\|\mathbb{P}^1\to BR^\times\|_{\text{set}}\\d&\mapsto&|{\cal O}(d)|\end{array}
$$

Fact: Any line bundle $L: \mathbb{P}^1 \to BR^\times$ has the same automorphism group $(L = L) \cong R^{\times}$.

$$
\begin{array}{ccc}\mathbb{Z}\times BR^{\times}&\stackrel{\sim}{\to}&(\mathbb{P}^{1}\to BR^{\times})\\(d,L)&\mapsto&L\otimes\mathcal{O}(d)\end{array}
$$

Corollary: If $deg(L) = 0$ then we have $\prod_{\rho,\rho':\mathbb{P}^1} L(\rho) = L(\rho').$

Adjust L so that we can expect $||L = \mathcal{O}(0)||$.

Fix a standard plane P_0 : $\mathbb{G}_2(R^{n+1})$. Consider $\deg(\mathcal{L}|_{\mathbb{G}_1(P_0)})$: $\mathbb{Z}.$

Fix a standard plane P_0 : $\mathbb{G}_2(R^{n+1})$. Consider $\deg(\mathcal{L}|_{\mathbb{G}_1(P_0)})$: $\mathbb{Z}.$

We can arrange $\deg(\mathcal{L}|_{\mathbb{G}_{1}(P_{0})})=0$ by replacing $\mathcal L$ with some $L \otimes \mathcal{O}(d)$.

Fix a standard plane P_0 : $\mathbb{G}_2(R^{n+1})$. Consider $\deg(\mathcal{L}|_{\mathbb{G}_1(P_0)})$: $\mathbb{Z}.$

We can arrange $\deg(\mathcal{L}|_{\mathbb{G}_{1}(P_{0})})=0$ by replacing $\mathcal L$ with some $L \otimes \mathcal{O}(d)$.

Fact: $\mathbb{G}_2(R^{n+1})$ is indecomposable.

Fix a standard plane P_0 : $\mathbb{G}_2(R^{n+1})$. Consider $\deg(\mathcal{L}|_{\mathbb{G}_1(P_0)})$: $\mathbb{Z}.$

We can arrange $\deg(\mathcal{L}|_{\mathbb{G}_{1}(P_{0})})=0$ by replacing $\mathcal L$ with some $L \otimes \mathcal{O}(d)$.

Fact: $\mathbb{G}_2(R^{n+1})$ is indecomposable.

So $\deg(\mathcal{L}|_{\mathbb{G}_1(P)})=0$ for every plane P : $\mathbb{G}_2(R^{n+1}).$

Fix a standard plane P_0 : $\mathbb{G}_2(R^{n+1})$. Consider $\deg(\mathcal{L}|_{\mathbb{G}_1(P_0)})$: $\mathbb{Z}.$

We can arrange $\deg(\mathcal{L}|_{\mathbb{G}_{1}(P_{0})})=0$ by replacing $\mathcal L$ with some $L \otimes \mathcal{O}(d)$.

Fact: $\mathbb{G}_2(R^{n+1})$ is indecomposable.

So $\deg(\mathcal{L}|_{\mathbb{G}_1(P)})=0$ for every plane P : $\mathbb{G}_2(R^{n+1}).$

Thus: $L(p) = L(p')$ for all p, p' on $\mathbb{G}_1(P)$.

▶ Use interpolation.

▶ Use interpolation.

For $p \neq p'$ in \mathbb{P}^n we have $\deg(\mathcal{L}|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so:

▶ Use interpolation.

For $p \neq p'$ in \mathbb{P}^n we have $\deg(\mathcal{L}|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so: $p \neq p' \quad \rightarrow \quad L(p) = L(p')$

▶ Use interpolation.

For
$$
p \neq p'
$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:
 $p \neq p' \rightarrow L(p) = L(p')$

Fix standard points $p_0, p_1 : \mathbb{P}^n$.

▶ Use interpolation.

For
$$
p \neq p'
$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:
 $p \neq p' \rightarrow L(p) = L(p')$

Fix standard points $p_0, p_1 : \mathbb{P}^n$ and paths $L(p_0) = R^1$, $L(p_1) = R^1$.

 $L = \text{const } L(p_0)$ on $\mathbb{P}^n \setminus \{p_0\}$ $L = \text{const } L(p_1)$ on $\mathbb{P}^n \setminus \{p_1\}$

▶ Use interpolation.

For
$$
p \neq p'
$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p, p' \rangle)}) = 0$, so:

$$
p \neq p' \rightarrow L(p) = L(p')
$$

Fix standard points $p_0, p_1 : \mathbb{P}^n$ and paths $L(p_0) = R^1$, $L(p_1) = R^1$.

 $L = \mathsf{const}\, R^1 \quad \textsf{on}\,\, \mathbb{P}^n \setminus \{p_0\}$ $L = \mathsf{const}\, R^1 \quad \textsf{on}\,\, \mathbb{P}^n \setminus \{ \rho_1 \}$

▶ Use interpolation.

For
$$
p \neq p'
$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:
 $p \neq p' \rightarrow L(p) = L(p')$

Fix standard points $p_0, p_1 : \mathbb{P}^n$ and paths $L(p_0) = R^1$, $L(p_1) = R^1$.

 $L = \mathsf{const}\, R^1 \quad \textsf{on}\,\, \mathbb{P}^n \setminus \{p_0\}$ $L = \mathsf{const}\, R^1 \quad \textsf{on}\,\, \mathbb{P}^n \setminus \{ \rho_1 \}$

For $p : \mathbb{P}^n \setminus \{p_0, p_1\}$ we have two identifications:

$$
R^1 = L(p) = R^1
$$

▶ Use interpolation.

For
$$
p \neq p'
$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:
 $p \neq p' \rightarrow L(p) = L(p')$

Fix standard points $p_0, p_1 : \mathbb{P}^n$ and paths $L(p_0) = R^1$, $L(p_1) = R^1$.

 $L = \mathsf{const}\, R^1 \quad \textsf{on}\,\, \mathbb{P}^n \setminus \{p_0\}$ $L = \mathsf{const}\, R^1 \quad \textsf{on}\,\, \mathbb{P}^n \setminus \{ \rho_1 \}$

For $p : \mathbb{P}^n \setminus \{p_0, p_1\}$ we have two identifications:

$$
R^1 = L(p) = R^1
$$

Fact: Every function $\mathbb{P}^n \setminus \{p_0, p_1\} \to R^\times$ is constant.

▶ Use interpolation.

For
$$
p \neq p'
$$
 in \mathbb{P}^n we have $\deg(L|_{\mathbb{G}_1(\langle p,p'\rangle)}) = 0$, so:
 $p \neq p' \rightarrow L(p) = L(p')$

Fix standard points $p_0, p_1 : \mathbb{P}^n$ and paths $L(p_0) = R^1$, $L(p_1) = R^1$.

 $L = \mathsf{const}\, R^1 \quad \textsf{on}\,\, \mathbb{P}^n \setminus \{p_0\}$ $L = \mathsf{const}\, R^1 \quad \textsf{on}\,\, \mathbb{P}^n \setminus \{ \rho_1 \}$

For $p : \mathbb{P}^n \setminus \{p_0, p_1\}$ we have two identifications:

$$
R^1 = L(p) = R^1
$$

Fact: Every function $\mathbb{P}^n \setminus \{p_0, p_1\} \to R^\times$ is constant.

So we conclude: $L = \mathcal{O}(0)$.

Recall: Every function $R^m \to R^n$ is given by *n* polynomials in *m* variables.

Recall: Every function $R^m \to R^n$ is given by *n* polynomials in *m* variables.

Theorem

Every function $f: \mathbb{P}^m \to \mathbb{P}^n$ is given by $n+1$ homogeneous polynomials of some degree d in $m + 1$ variables.

Recall: Every function $R^m \to R^n$ is given by *n* polynomials in *m* variables.

Theorem

Every function $f: \mathbb{P}^m \to \mathbb{P}^n$ is given by $n+1$ homogeneous polynomials of some degree d in $m + 1$ variables.

Core step: $d := \deg(\mathcal{O}(1) \circ f)$

Recall: Every function $R^m \to R^n$ is given by *n* polynomials in *m* variables.

Theorem

Every function $f: \mathbb{P}^m \to \mathbb{P}^n$ is given by $n+1$ homogeneous polynomials of some degree d in $m + 1$ variables.

Core step: $d := \deg(\mathcal{O}(1) \circ f)$

Corollary

Every automorphism $\mathbb{P}^n \overset{\sim}{\to} \mathbb{P}^n$ is given by an invertible matrix, unique up to scalar multiplication.

$$
\operatorname{Aut}(\mathbb{P}^n)\cong \operatorname{PGL}_{n+1}(R)
$$