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A Simple Example

Theorem (Extreme Value Theorem)
A continuous function from a compact Hausdorff space into the real numbers is bounded and
attains both a maximum and a minimum value.

A compact interval [a, b] is the historically first special case a proof of which relies on two
main ingredients: the Bolzano–Weierstraß theorem and the Dedekind completeness of
the real numbers.
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Randomization

• Let (X ,F , µ) be a probability space, let K : X ⇒ R be a compact-valued correspondence,
and let f : X × R→ R be a function such that f(x, y) is continuous in y for every x.

• Under which assumptions is the optimal value function

x 7→ inf{f(x, y) : y ∈ K(x)}

measurable?
• By the Kuratowski–Ryll-Nardzewski measurable selection theorem, a sufficient condition

for the existence of a measurable function x 7→ ψ(x) ∈ K(x) is the Effros measurability
condition

{x ∈ X : K(x) ∩ O , ∅} ∈ F

for every open set O in R.
• Additionally, if f is a Carathédory integrand, that is, f(x, y) is measurable in x for every y,

then the optimal value function is measurable.
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Measurable Selection Theory

• The basic strategy of measurable selection theory involves a pointwise formalization,
fiberwise application of classical theorems, and establishing sufficient conditions for the
existence of measurable selections, such as separability and closed-valued
correspondences.

• These assumptions cannot essentially be relaxed if we replace pointwise everywhere
formalization with an almost everywhere one.

• Applications include stochastic programming (e.g., portfolio optimization), optimal control
theory (e.g., differential inclusions), calculus of variations (e.g., energy minimization),
game theory (e.g., existence of Nash equilibrium), and mathematical economics (e.g.,
decision theory under uncertainty).
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A Direct Point-Free Approach

• Let L0 = L0(X → R) denote the space of measurable functions f : X → R, where two
functions f and g are identified if µ({x ∈ X : f(x) , g(x)}) = 0.

• Equipped with pointwise almost sure addition, multiplication, and ordering, L0 is an
ordered commutative unital ring.

• There are essentially two choices for convergence on L0: the topology of convergence in
probability, which is metrizable (and a ring topology), or almost sure convergence, which
is generally not even topologizable.

• Let f , g ∈ L0 with f ≤ g almost surely. Consider the random (point-free) interval

K = [f , g] = {h ∈ L0 : f ≤ h ≤ g}.

In general, K is not compact in the topology of convergence in probability, though it is
closed under almost sure convergence, and bounded with respect to the almost sure
ordering.
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A measurable Euclidean Topology

• Consider the topology generated by the open intervals (f , g), where f , g ∈ L0 with f < g.
This is also a ring topology, but it is much finer than the topology of convergence in
probability.

• Notice that an open interval (f , g) satisfies the following concatenation property: given a
countable measurable partition (An) of X and hn ∈ (f , g), the function h defined by h = hn

on An is an element of (f , g) as well.
• A collection C of subsets of L0 is said to ’cover’ a set X if, for any element f ∈ X , there

exists a partition (An) and elements fn ∈ Yn for some Yn ∈ C such that f = fn on An for all
n.

• A set X in L0 is ’compact’ if, for every covering C consisting of open intervals, there exists
a partition (An) and for each n a finite subcollection Cn ⊂ C such that for every f ∈ X ,
there is an fn ∈ Yn ∈ Cn with f = fn on An for all n.

• The interval [f , g] satisfies this notion of compactness.

16 / 68



A measurable Euclidean Topology

• Consider the topology generated by the open intervals (f , g), where f , g ∈ L0 with f < g.
This is also a ring topology, but it is much finer than the topology of convergence in
probability.

• Notice that an open interval (f , g) satisfies the following concatenation property: given a
countable measurable partition (An) of X and hn ∈ (f , g), the function h defined by h = hn

on An is an element of (f , g) as well.

• A collection C of subsets of L0 is said to ’cover’ a set X if, for any element f ∈ X , there
exists a partition (An) and elements fn ∈ Yn for some Yn ∈ C such that f = fn on An for all
n.

• A set X in L0 is ’compact’ if, for every covering C consisting of open intervals, there exists
a partition (An) and for each n a finite subcollection Cn ⊂ C such that for every f ∈ X ,
there is an fn ∈ Yn ∈ Cn with f = fn on An for all n.

• The interval [f , g] satisfies this notion of compactness.

17 / 68



A measurable Euclidean Topology

• Consider the topology generated by the open intervals (f , g), where f , g ∈ L0 with f < g.
This is also a ring topology, but it is much finer than the topology of convergence in
probability.

• Notice that an open interval (f , g) satisfies the following concatenation property: given a
countable measurable partition (An) of X and hn ∈ (f , g), the function h defined by h = hn

on An is an element of (f , g) as well.
• A collection C of subsets of L0 is said to ’cover’ a set X if, for any element f ∈ X , there

exists a partition (An) and elements fn ∈ Yn for some Yn ∈ C such that f = fn on An for all
n.

• A set X in L0 is ’compact’ if, for every covering C consisting of open intervals, there exists
a partition (An) and for each n a finite subcollection Cn ⊂ C such that for every f ∈ X ,
there is an fn ∈ Yn ∈ Cn with f = fn on An for all n.

• The interval [f , g] satisfies this notion of compactness.

18 / 68



A measurable Euclidean Topology

• Consider the topology generated by the open intervals (f , g), where f , g ∈ L0 with f < g.
This is also a ring topology, but it is much finer than the topology of convergence in
probability.

• Notice that an open interval (f , g) satisfies the following concatenation property: given a
countable measurable partition (An) of X and hn ∈ (f , g), the function h defined by h = hn

on An is an element of (f , g) as well.
• A collection C of subsets of L0 is said to ’cover’ a set X if, for any element f ∈ X , there

exists a partition (An) and elements fn ∈ Yn for some Yn ∈ C such that f = fn on An for all
n.

• A set X in L0 is ’compact’ if, for every covering C consisting of open intervals, there exists
a partition (An) and for each n a finite subcollection Cn ⊂ C such that for every f ∈ X ,
there is an fn ∈ Yn ∈ Cn with f = fn on An for all n.

• The interval [f , g] satisfies this notion of compactness.

19 / 68



A measurable Euclidean Topology

• Consider the topology generated by the open intervals (f , g), where f , g ∈ L0 with f < g.
This is also a ring topology, but it is much finer than the topology of convergence in
probability.

• Notice that an open interval (f , g) satisfies the following concatenation property: given a
countable measurable partition (An) of X and hn ∈ (f , g), the function h defined by h = hn

on An is an element of (f , g) as well.
• A collection C of subsets of L0 is said to ’cover’ a set X if, for any element f ∈ X , there

exists a partition (An) and elements fn ∈ Yn for some Yn ∈ C such that f = fn on An for all
n.

• A set X in L0 is ’compact’ if, for every covering C consisting of open intervals, there exists
a partition (An) and for each n a finite subcollection Cn ⊂ C such that for every f ∈ X ,
there is an fn ∈ Yn ∈ Cn with f = fn on An for all n.

• The interval [f , g] satisfies this notion of compactness.

20 / 68



A Measurable Extreme Value Theorem

Theorem
Let F : [f , g]→ L0 be continuous in the interval topology and respect concatenations in the
sense that if h ∈ [f , g] is such that h = hn on An for some partition (An) and hn ∈ [f , g], then
F(h) = F(hn) on An.
Then F is bounded and attains a maximum and a minimum with respect to the almost sure
order.

• L0 is Dedekind complete with respect to the almost sure order.
• We also have a Bolzano–Weierstraß-type theorem: Let (fn) be a bounded sequence.

Then there exists an increasing sequence of random indices N1(x) < N2(x) < . . . and an
f ∈ L0 such that fNk (x)(x)→ f(x) almost surely.
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A Generalization of Measurable Selection Techniques

• There is a one-to-one relationship between compact-valued Effros measurable
correspondences and ’compact’ subsets of L0 that are closed under countable
concatenations.

• There is a one-to-one relationship between Carathéodory integrands and continuous
functions from L0 to itself in the interval topology, respecting countable concatenations.

• The direct procedure we outlined can be generalized to allow values in inseparable
spaces (the modified notion of compactness is flexible), and we can replace
closed-valued Effros measurable correspondences with any subset of L0 that is closed
under countable concatenations.

25 / 68



A Generalization of Measurable Selection Techniques

• There is a one-to-one relationship between compact-valued Effros measurable
correspondences and ’compact’ subsets of L0 that are closed under countable
concatenations.

• There is a one-to-one relationship between Carathéodory integrands and continuous
functions from L0 to itself in the interval topology, respecting countable concatenations.

• The direct procedure we outlined can be generalized to allow values in inseparable
spaces (the modified notion of compactness is flexible), and we can replace
closed-valued Effros measurable correspondences with any subset of L0 that is closed
under countable concatenations.

26 / 68



A Generalization of Measurable Selection Techniques

• There is a one-to-one relationship between compact-valued Effros measurable
correspondences and ’compact’ subsets of L0 that are closed under countable
concatenations.

• There is a one-to-one relationship between Carathéodory integrands and continuous
functions from L0 to itself in the interval topology, respecting countable concatenations.

• The direct procedure we outlined can be generalized to allow values in inseparable
spaces (the modified notion of compactness is flexible), and we can replace
closed-valued Effros measurable correspondences with any subset of L0 that is closed
under countable concatenations.

27 / 68



Automatic Measurability

• No countability/separability assumptions are required to guarantee measurability.

• In fact, we adopt a point-free and direct approach that bypasses fiberwise applications of
classical theorems and measurable selection theory. Instead, we identify objects,
relations, and concepts that admit provable measurable versions of classical theorems.
The application of these measurable versions leads directly to measurable outcomes.

• The underlying assumptions are that the measure space has σ-finite measure, and all
objects and relations are identified up to almost sure equivalence, and respect countable
concatenations.
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Toposes of Measure-theoretic Sheaves

• Identifying at the primary level of the probability space (X ,F , µ) leads to the associated
measure algebra A = F /N , where N is the σ-ideal of null sets. This quotient algebra
satisfies two key properties:

• The countable chain condition: partitions are at most countable.
• Completeness: A is closed under arbitrary joins and meets.

• On the complete Boolean algebra A, the function J associating to each a ∈ A the
collection of partitions of a forms a Grothendieck basis for the sup-topology on A.

• We construct the Grothendieck topos of sheaves Sh on the site (A, J).
• This topos has a rich internal logic: it has a natural numbers object, it is Boolean, and

satisfies the axiom of choice.
• In fact, one can show that the objects of this topos form a Boolean-valued model of ZFC.

We have just seen an example of the internal discourse of this topos.
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The Real Numbers in Sh

• For a ∈ A, let L0(a) denote the space of restrictions of measurable functions to a
representative of a, and for a ≤ b in A, let φa,b : L0(b)→ L0(a) be the restriction map.
Then RSh = {L0(a)a∈A, (φa,b)a,b∈A, a≤b } is an object of Sh - in fact, it is (up to isomorphy)
the real numbers of Sh.

• The measurable version of the Bolzano–Weierstraß theorem is an external interpretation
of the Bolzano–Weierstraß theorem inside Sh.

• The power set of RSh can be described as pairs (X , a) where a ∈ A and X ⊂ L0 is closed
under countable concatenations.
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the real numbers of Sh.

• The measurable version of the Bolzano–Weierstraß theorem is an external interpretation
of the Bolzano–Weierstraß theorem inside Sh.

• The power set of RSh can be described as pairs (X , a) where a ∈ A and X ⊂ L0 is closed
under countable concatenations.
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Set intersection
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Set complement
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Examples of Measure-Theoretic Sheaves
• We can construct measure-theoretic sheaves out of any L0(X → E) where (E,E) is any

measurable space.

• If E is a Banach space, we can consider only strongly measurable functions. In this case,
L0(X → E) is an internal Banach space with norm x 7→ ‖f(x)‖.

• More abstractly, for any σ-complete Boolean algebra E, let Hom(E,A) denote the
collection of Boolean σ-homomorphisms. In general, we only have the inclusion
L0(X → E) ⊂ Hom(E → A) if E is an algebra of subsets of some set E.

• Let G ⊂ F be a sub-σ-algebra. We define

L2(F |G) = {f ∈ L0 : E(|f |2|G) < ∞}

This is a subset of L0(F ) closed under countable concatenations. It is a Sh (complex)
Hilbert space with Sh-inner product

〈f , g〉 := E(f · g|G)
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Two Applications to Ergodic Structure Theory

• Fix an arbitrary discrete group Γ.

• Let (A, µ) be a probability algebra and let Aut(A, µ) denote the group of
measure-preserving Boolean automorphisms of (A, µ).

• We define a measure-preserving dynamical system (MPDS) to be a tuple (A, µ,T),
where (A, µ) is a probability algebra and T : Γ→ Aut(A, µ) is a group homomorphism.

• A factor of an MPDS (A, µ,T) is another MPDS (B, ν,S) such that there exists a
measure-preserving Boolean homomorphism π : B → A that intertwines the action:
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Koopman Representation
• The Koopman unitary representation of Γ on L2(A, µ) splits as:

L2(A, µ) = AP ⊕WM,

where AP corresponds to the finite-dimensional representations (the almost
periodic/compact/structured part of the system (A, µ,T)), and WM is the part that does
not admit any finite-dimensional representation (the weakly mixing/random part of the
system).

• This primary decomposition, however, does not capture the fine structure of (A, µ,T). For
example, consider the Z-system T × T where the dynamics are induced by:

(x, y) 7→ (x + α, y + x).

The almost periodic part of this system is the factor T, with x 7→ x + α. However, relative
to this factor, the whole system T × T also behaves almost periodically. The global system
T × T is a compact extension of its compact factor T.
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Representation Theory of Compact Extensions

• To understand the representation theory and classification of compact extensions, we
need a formalism for performing analysis relative to a factor.

• Classically, this is done using measurable Hilbert space bundles and direct integrals using
the disintegration of measure of the factor map π : B → A.

• This approach is similar to the one outlined in the previous optimal value problem and
suffers from the same restrictions. Indeed, measure disintegrations only exist under
countability assumptions on the acting group and/or separability assumptions on the
probability algebras.

• Alternatively, we can translate the problem into the topos of measure-theoretic sheaves
on the factor algebra. In this context, the representation theory of the compact extension
can be established by the internal Hilbert space theory of the sheaf L2(F |G). This
removes countability and separability restrictions. In fact, the representation theory of
compact extensions follows from the logical transfer principle (J., ETDS 2023).
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Measurable Cohomology
• Assume Γ is abelian. Let (X , µ,T) be a Γ-system, and let K be a compact abelian group.

A cocycle is a map ρ : Γ × X → K satisfying for all γ1, γ2 ∈ Γ the cocycle identity

ργ1+γ2 = ργ1 + ργ2 ◦ Tγ1 .

A cocycle ρ is a coboundary if there exists a measurable map F : X → K such that for all
γ ∈ Γ,

ργ = F ◦ Tγ − F .

• A classical theorem of Moore and Schmidt provides a criterion for checking vanishing
cohomology: a cocycle ρ is a coboundary if and only if ξ ◦ ρ is a coboundary for all
characters ξ of the compact abelian group K .

• A pointwise formalization of this theorem leads to restrictions, such as Γ being countable,
K being metrizable, and (X , µ) being separable.

• Following a point-free formalization, Tao and I (ETDS, 2023) proved a more general
version of the Moore–Schmidt theorem using the internal Pontryagin duality between
compact and discrete abelian groups in the topos over the measure algebra of (X , µ).
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An Application to Vector Duality
• Let E be a Banach space, and let Lp(X → E), 1 ≤ p ≤ ∞, be the Bochner space of

strongly measurable, p-integrable functions.

• What is the dual space of Lp(X → E)?
• Radon–Nikodým property: For any absolutely continuous vector measure ν : F → E∗,

there exists a Bochner integrable function f : X → E∗ such that ν(E) =
∫

f dµ.
• If E∗ satisfies the Radon–Nikodým property, then for all 1 < p < ∞, we have

Lp(X → E)∗ = Lq(X → E∗),

where q is the conjugate exponent of p.
• A topos-theoretic interpretation: Suppose that E∗ satisfies the Radon–Nikodým property,

then the internal dual of the internal Banach space L0(X → E) is the internal Banach
space L0(X → E∗).

• This interpretation suggests a way to understand vector duality when E∗ does not satisfy
the Radon–Nikodým property (work in progress).
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