Geometry and logic of subtoposes

by Laurent Lafforgue

(Lagrange Center, Huawei Research Center in Boulogne-Billancourt, France)

Plan :

- **I.** Introduction: Why toposes?
- **II.** Subtoposes and Grothendieck topologies
- **III.** Generation of topologies and provability
- **IV.** Geometric operations on subtoposes

"Toposes in Mondovi" Summer School, September 3-6, 2024

References:

- [SGA, tome I] "Théories des topos" by A. Grothendieck, J.-L. Verdier.
- [Elephant] "Sketches of an Elephant: A Topos Theory Compendium" by P. Johnstone.
- [Relative] "Relative Topos Theory via Stacks" by O. Caramello and R. Zanfa.
- [Denseness] "Denseness conditions, morphisms and equivalences of toposes" by O. Caramello.
- [TST] "Theories, Sites, Toposes" by O. Caramello.
- [Engendrement] "Engendrement de topologies, démontrabilité et opérations sur les sous-topos" (to appear soon) by O. Caramello and L. Lafforgue.

I. Why subtoposes?

• **Why toposes?**

- **-** Toposes as a wide generalisation of topological spaces.
- **-** Toposes as universal invariants.
- **-** Toposes as pastiches of the category of sets.
- **-** Toposes as incarnations of the semantics of theories.
- **The multiple expressions of the notion of subtopos**
	- **-** The categorical definition.
	- **-** The expression in terms of Grothendieck topologies.
	- **-** The logical expression in terms of quotient theories.
	- **-** Provability as a topological problem.
- **The geometric operations on subtoposes**
	- **-** Inner operations: intersection, union, difference.
	- **-** Outer operations: existential push-forward,

pull-back, universal push-forward.

Toposes as a wide generalisation of topological spaces:

Definition. – A topos is a category $\mathcal E$ which is equivalent to the category \widehat{C}_J of set-valued "sheaves" *on a site* (C, *J*) *consisting in* $\sqrt{ }$

$$
C = (essentially) small category,
$$

$$
J = "topology" on C = notion of "covering".
$$

Remark: Any topological space *X* defines the topos

 \mathcal{E}_X = category of set-valued sheaves on

 $\int \mathcal{C}_X$ = category of open subsets of X,

 J_X $\hspace{0.1cm}$ = $\hspace{0.1cm}$ ordinary notion of covering by subsets.

Definition. – *A morphism of toposes ε'* f *− ε is a pair of <u>adjoint functors</u>* $(\mathcal{E} \xrightarrow{f^*} \mathcal{E}', \mathcal{E}' \xrightarrow{f_*} \mathcal{E})$

such that f [∗] *respects finite limits.*

Remarks:

- Any continous map $X' \xrightarrow{f} X$ induces a topos morphism $f : \mathcal{E}_{X'} \longrightarrow \mathcal{E}_{X}$.
- The map $(X' \xrightarrow{f} X) \mapsto (\mathcal{E}_{X'} \rightarrow \mathcal{E}_X)$ is <u>one-to-one</u> if *X* is "sober".
- <u>Points</u> of a topos $\mathcal E$ are defined as topos morphisms $\{sets\} = Pt \longrightarrow \mathcal E$.

Toposes as universal invariants:

Cohomology:

Sheaf cohomology on topological spaces generalises to arbitrary linear objets of arbitrary toposes related by arbitrary morphisms of toposes.

Homotopy:

The construction of fundamental groups π_1 and higher homotopy groups π_i , $i > 2$, of locally connected topological spaces *X* factorises through their associated toposes \mathcal{E}_X and generalises to toposes $\mathcal E$ which are "locally connected".

Topos invariants and Caramello's "bridge" theory:

- More generally, any construction or property which is
	- $\sqrt{ }$ − phrased in categorical terms,
	- $\frac{1}{2}$ − well-defined for toposes (or wide classes of toposes),
	- \mathcal{L} − invariant under equivalences of toposes,

defines an invariant of sites (C, J) .

• The expression of such an invariant in different equivalent sites

 (C, J) and (C', J') related by $\widehat{C}_J \cong \widehat{C}_J'$

often generates unexpected equivalences.

Toposes as pastiches of the category of sets:

Theorem (Grothendieck-Giraud). $-A$ category $\mathcal E$ *is a topos if and only if:*

- **(0)** $\mathcal E$ *is locally small.*
- **(1)** Arbitrary limits are well-defined in \mathcal{E} .
- **(2)** *Arbitrary colimits are well-defined in* E*.*
- **(3)** *Base change functors E* ′ ×*^E in* E *respect arbitrary colimits.*
- **(4)** *Filtering colimit functors in* E *respect finite limits.*
- **(5)** *Sums in* E *are disjoint.*
- **(6)** A morphism in $\mathcal E$ is an isomorphism if (and only if) *it is a monomorphism and an epimorphism.*
- **(7)** *Quotients of an objet E of* E *correspond one-to-one to equivalence relations* $R \hookrightarrow E \times E$.
- **(8)** *The subobjects of an object E of* E *form a set.*
- **(9)** *The quotients of an object E of* E *form a set.*
- **(10)** *The contravariant functor* $E \mapsto \{subobjects \ of \ E\}$ *is representable by an object* Ω *of* E*, the "subobject classifyer".*
- (11) *For any objects* E, E' *of* \mathcal{E} *, the functor* $\text{Hom}(E \times \bullet, E')$ is representable by an object \mathcal{H} om(E, E') of $\mathcal{E}.$
- **(12)** *The category* E *has small "separating" families of objects.*

Toposes for expressions of the semantics of theories:

Let $\mathbb T$ be a "geometric" first-order theory consisting in

- a vocabulary (or "signature")
	- $\sqrt{ }$ − names of objects (or "sorts"),
	- $\frac{1}{2}$ − names of operations (or "function symbols"),
		- $−$ $\,$ <u>names of relations</u> (or "relation symbols"),
- a family of "axioms" taking the form of implications $\varphi(x_1^{A_1} \cdots x_n^{A_n}) \vdash \psi(x_1^{A_1} \cdots x_n^{A_n})$

between "formulas" in variables

 $x_1^{A_1} \cdots x_n^{A_n}$ associated with "<u>sorts</u>" A_1, \cdots, A_n

which are "geometric" in the sense that they only use the symbols

 \wedge (finite conjunction), \top (truth),

 \lor (arbitrary disjunction), \perp (false),

∃ (existential quantifier in part of the variables).

Proposition. – *(i)* For any topos \mathcal{E} ,

there is a well-defined category of "models" of \mathbb{T} *in* \mathcal{E} \mathbb{T} -mod (\mathcal{E}) *.* (*ii*) <u>Any topos morphism</u> $f : \mathcal{E}' \to \mathcal{E}$ induces a pull-back functor of <u>models</u> of \mathbb{T}

 $f^*: \mathbb{T}$ -mod $(\mathcal{E}) \longrightarrow \mathbb{T}$ -mod (\mathcal{E}') .

 \mathcal{L}

 $\sqrt{ }$ $\frac{1}{2}$ \mathcal{L}

Toposes as incarnations of the semantics of theories:

Theorem (Grothendieck, Hakim, Lawvere, Joyal, Makkai, Reyes, · · · **)**. –

For any first-order geometric theory T*, there exist*

a topos $\mathcal{E}_{\mathbb{T}}$ *(called the "classifying topos" of* \mathbb{T} *).*

a model $U_{\mathbb{T}}$ of \mathbb{T} *in* $\mathcal{E}_{\mathbb{T}}$ *(called the "universal model" of* \mathbb{T} *)*

such that, for any topos E*, the functor*

is an equivalence of categories.

Remarks: \bullet Conversely, for any topos \mathcal{E} , there are infinitely many first-order geometric theories $\mathbb T$ such that $\varepsilon_{\mathbb{T}} \cong \mathcal{E}$. • Theories \mathbb{T}, \mathbb{T}' such that $\mathcal{E}_{\mathbb{T}} \cong \mathcal{E}_{\mathbb{T}'}$ can be called "semantically equivalent".

 $\sqrt{ }$

The multiple expressions of the notion of subtopos :

Categorical definition. –

A subtopos of a topos \mathcal{E} *is a full subcategory* $\mathcal{E}' \hookrightarrow \mathcal{E}$ such that:

- (1) The embedding functor $j_* : \mathcal{E}' \hookrightarrow \mathcal{E}$
here a loft edicint $j^* : \mathcal{E}' \to \mathcal{E}'$ *has a left adjoint* $j^* : \mathcal{E} \to \mathcal{E}'$.
- **(2)** *This left adjoint* $j^* : \mathcal{E} \to \mathcal{E}'$
respects not only exhiteny on *respects not only arbitrary colimits but also finite limits.*
- (3) An object E of $\mathcal E$ belongs to the full subcategory $\mathcal E'$ *if and only if the canonical morphism*

^E [→] *^j*∗*^j* [∗]*E is an isomorphism.*

Remarks:

• A topos morphism $f : \mathcal{E}' \to \mathcal{E}$
can be called an "embedding" if i can be called an "embedding" if its push-forward component $f_* : \mathcal{E}' \to \mathcal{E}$ is fully faithful or, equivalently, if the natural transformation $f^* \circ f_* \to \text{Id}_{\mathcal{E}}$ is an isomorphism. • Subtoposes of a topos $\mathcal E$ can equivalently be defined as equivalence classes of embeddings $\mathcal{E}' \hookrightarrow \mathcal{E}$.

Expressions of subtposes in terms of Grothendieck topologies:

Theorem (Grothendieck, SGA 4). –

Let E *be a topos presented as the category of sheaves*

 \tilde{C}_J on a site (C, J)

consisting in an essentially small category C *endowed with a topology J. Then:*

(i) *Any topology J* ′ *on* C *which contains J defines a subtopos*

$$
\widehat{\mathcal{C}}_{J'} \hookrightarrow \widehat{\mathcal{C}}_J \cong \mathcal{E} .
$$

(ii) *Conversely, any subtopos of* $\hat{C}_J \cong \mathcal{E}$ *is associated with a unique topology J* ′ ⊇ *J of* C*.*

Consequences:

- The subtoposes of any topos $\mathcal E$ form a partially ordered set.
- Arbitrary joins \vee of subtoposes are always well-defined. They correspond to arbitrary intersections of topologies.
- Arbitrary intersections \wedge of subtoposes are always well-defined. They correspond to topologies generated by families of topologies.

Logical expression of subtoposes in terms of quotient theories:

Definition. – *Let* T *be a geometric first-order theory written in a vocabulary* Σ*. Then:*

(i) *A quotient theory* T ′ *of* T *is a geometric first-order theory written in the same vocabulary* Σ *and such that any implication (or "sequent") of geometric formulas* $\varphi(x_1^{A_1}, \dots, x_n^{A_n}) \vdash \psi(x_1^{A_1}, \dots, x_n^{A_n})$ which is provable in $\mathbb T$ is also provable in $\mathbb T'$. **(ii)** *Two quotient theories* \mathbb{T}_1 *and* \mathbb{T}_2 *of* \mathbb{T} *are called "syntactically equivalent" if they have the same provable implications* $\varphi(\vec{x}) \vdash \psi(\vec{x})$ *.*

Theorem (O.C., PhD thesis; see chapter 3 of [TST]). –

- **(i)** *Any quotient theory* T ′ *of a geometric first-order theory* T *is classified by a subtopos* $\overline{\mathcal{E}_{\mathbb{T}'} \hookrightarrow \mathcal{E}_{\mathbb{T}}}.$
- (ii) *Conversely, any subtopos* $\mathcal{E}' \hookrightarrow \mathcal{E}_{\mathbb{T}}$
is accessional with a quation theory \mathbb{T}/\mathbb{Z} *is associated with a quotient theory* T ′ *of* T*, which is unique up to syntactic equivalence.*

Provability as a topological problem:

Corollary. – *Suppose* T *is a geometric first-order theory written in a vocabulary* Σ *and its classifying topos* $\mathcal{E}_{\mathbb{T}}$ *is presented as the category of sheaves on a site* (C, J) *:* $\mathcal{E}_T \cong \widehat{\mathcal{C}}_J$ *. Then it is possible to construct from any sequent of geometric formulas* $\varphi(\vec{x}) \vdash \psi(\vec{x})$ *in the vocabulary* Σ *a family of "sieves" on C* $\mathcal{X}_{\vec{x},\varphi,\psi}$ *such that:* **(i)** *For any quotient theory* T ′ *of* T *defined by a family of extra axioms* $\varphi_i(\vec{x}_i) \vdash \psi_i(\vec{x}_i), i \in I$, *the associated subtopos* $\varepsilon_{\mathbb{T}'} \longrightarrow \mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}$ *corresponds to the topology J* ′ ⊇ *J on* C g enerated by J and the <u>families of sieves</u> $\mathcal{X}_{\vec{\mathsf{X}}_i,\phi_i,\psi_i},\,i\in I.$ **(ii)** *Any implication of geometric formulas* $\varphi(\vec{x}) \vdash \psi(\vec{x})$ *is provable in* \mathbb{T}' *if and only if all sieves in the associated family* $\mathcal{X}_{\vec{x},\varphi,\psi}$ *belong to the topology J* ′ *generated by J and the families* X⃗*xi*,φ*i*,ψ*ⁱ* $\chi_{\vec{x}_i, \varphi_i, \psi_i}$.

First inner geometric operations on subtoposes:

Lemma. – Let $\mathcal E$ be a topos and $(\mathcal E_i \hookrightarrow \mathcal E)_{i \in I}$ a family of subtoposes. **(i)** There exists a unique subtopos $\bigvee_{i \in I} \mathcal{E}_i \hookrightarrow \mathcal{E}$ *i*∈*I*
characterized by the property that, for any subtoposes $\mathcal{E}' \hookrightarrow \mathcal{E}$ *,
<i>E*/ p *S*/ p *S*/ p *S*/ p *S*/ p *S* $\mathcal{E}' \supseteq \bigvee_{i \in I} \mathcal{E}_i \Longleftrightarrow \mathcal{E}' \supseteq \mathcal{E}_i, \quad \forall i \in I.$ *i*∈*I* **(ii)** *There exists a unique subtopos* V $\bigwedge_{i\in I} \mathcal{E}_i \hookrightarrow \mathcal{E}$ *characterized* by the property that, for any subtoposes $\mathcal{E}' \hookrightarrow \mathcal{E}$,
 $S' \subseteq \Lambda S$, $S' \subseteq S$, $\forall i \in I$ $\mathcal{E}' \subseteq \bigwedge_{i \in I} \mathcal{E}_i \Longleftrightarrow \mathcal{E}' \subseteq \mathcal{E}_i, \quad \forall i \in I.$ *i*∈*I* **Remark:** If $\mathcal{E} \cong \widehat{\mathcal{C}}$ and the subtoposes $\mathcal{E}_i \hookrightarrow \mathcal{E}$ are associated with topologies $J_i \supseteq J$, $i \in I$, then: • the subtopos $\bigvee \mathcal{E}_i$ is associated with the topology *i*∈*I* $\bigcap J_i$, • the subtopos $\bigwedge \mathcal{E}_i$ is associated with the topology *i*∈*I* generated by the J_i 's, $i \in I$. **L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 13 / 90**

The inner operation of difference of subtoposes:

Proposition (Joyal?; see [Elephant]). – *For any pair of subtoposes* \mathcal{E}_1 , \mathcal{E}_2 *of a topos* \mathcal{E}_1 *there exists a unique subtopos* $\mathcal{E}_1 \backslash \mathcal{E}_2 \longrightarrow \mathcal{E}$ *characterized* by the property that, for any subtopos $\mathcal{E}' \hookrightarrow \mathcal{E}$,
 $S \setminus S' \subseteq S' \times S' \subseteq S \times S'$

 $\mathcal{E}_1 \backslash \mathcal{E}_2 \subseteq \mathcal{E}' \Longleftrightarrow \mathcal{E}_1 \subseteq \mathcal{E}_2 \vee \mathcal{E}'.$

Remark:

If $\mathcal{E} \cong \widehat{\mathcal{C}}_J$ and $\mathcal{E}_1, \mathcal{E}_2$ are defined by topologies *J*₁, *J*₂ on \mathcal{C} , then $\mathcal{E}_1 \backslash \mathcal{E}_2$ is defined by a topology denoted

$$
(\mathsf{J}_2 \Rightarrow \mathsf{J}_1)
$$

and <u>characterized</u> by the property that, for any topology *J'* on $\mathcal{C},$

$$
(J_2 \Rightarrow J_1) \supseteq J' \Longleftrightarrow J_1 \supseteq (J_2 \cap J').
$$

Corollary. – For any subtopos $\mathcal{E}' \hookrightarrow \mathcal{E}$ of a topos \mathcal{E} , we have:

- (i) The map of <u>union</u> with \mathcal{E}' $\mathcal{E}' \vee \bullet$ *respects arbitrary intersections of subtoposes of* E*.*
- (ii) The map of <u>intersection</u> with \mathcal{E}' $\mathcal{E}' \wedge \bullet$ *respects finite unions of subtoposes of* E*.*

Images of topos morphisms:

Proposition. – Any topos morphism *f* : \mathcal{E}' → \mathcal{E} *uniquely factorizes as* $\mathcal{E}' \xrightarrow{f} \text{Im}(f) \xrightarrow{f} \mathcal{E}$ *where*

- $\sqrt{ }$ $\Bigg\}$ • $\text{Im}(f) \stackrel{\text{i}}{\longrightarrow} \mathcal{E}$ *is an embedding of a subtopos,*
- $\overline{\mathcal{L}}$ • E ′ *f* −−↠ Im(*f*) *is a "surjective" topos morphism in the sense that its pull-back component* \overline{f}^* : Im(*f*) \longrightarrow \mathcal{E}' *is <u>faithful</u>.*

Remarks:

• If $\mathcal{E} \cong \widehat{\mathcal{C}}_J$ and C is <u>endowed with</u> $\mathcal{C} \xrightarrow{y} \widehat{\mathcal{C}} \xrightarrow{j^*} \widehat{\mathcal{C}}_J$, the outlinear $\mathcal{L}(\mathcal{E}) \cup \mathcal{L}$ is defined by the tapel the subtopos $\text{Im}(f) \hookrightarrow \mathcal{E}$ is <u>defined</u> by the topology $J' \supseteq J$
for which a giove $S \hookrightarrow V(X)$ is covering if and only if its tra for which a sieve $S \hookrightarrow y(X)$ is covering if and only if its transform by \hat{C} $\stackrel{j^*}{\longrightarrow} \hat{C}_j \cong \mathcal{E}$ $\stackrel{f^*}{\longrightarrow} \mathcal{E}'$ is an isomorphism of $\stackrel{j^*}{\longleftarrow}$ • If $\mathcal{E} \cong \mathcal{E}_{\mathbb{T}}$ and $f : \mathcal{E}' \to \mathcal{E}$ corresponds to a model *M* of \mathbb{T} in \mathcal{E}' , the subtance $\text{Im}(f) \leftrightarrow \mathcal{E}$ corresponds to the "theory of *M*" the subtopos $\text{Im}(f) \hookrightarrow \mathcal{E}$ corresponds to the "theory of *M*" T_M i.e. the quotient theory \mathbb{T}_M of \mathbb{T} for which a sequent $\varphi(\vec{x}) \vdash \psi(\vec{x})$ is provable in T_M if and only if it is verified by M.

Existential push-forward and pull-back of subtoposes:

Proposition. $-$ *Let f* : $\mathcal{E}' \rightarrow \mathcal{E}$ *be a morphism of toposes.*
Then: *Then:*

(i) *The map*

 $\mathcal{F}_* : \{\textsf{subtoposes}~\mathcal{E}_1' \hookrightarrow \mathcal{E}'\} \longrightarrow \{\textsf{subtoposes}~\mathcal{E}_1 \hookrightarrow \mathcal{E}\},$

$$
(\mathcal{E}'_1 \hookrightarrow \mathcal{E}') \longmapsto (\text{Im}(\mathcal{E}'_1 \hookrightarrow \mathcal{E}' \xrightarrow{f} \mathcal{E}) \hookrightarrow \mathcal{E})
$$

 $(\mathcal{E}_1' \hookrightarrow \mathcal{E}') \longmapsto (\text{Im}(\mathcal{E}))$
respects the <u>order relation</u> \supseteq *and arbitrary unions of subtoposes.*

(ii) *Equivalently, it has a left adjoint f*⁻¹ : {*subtoposes* $\mathcal{E}_1 \hookrightarrow \mathcal{E}$ } → {*subtoposes* $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$ }*,* $(\mathcal{E}_1 \hookrightarrow \mathcal{E}) \longmapsto (f^{-1}\mathcal{E}_1 \hookrightarrow \mathcal{E}')$
proporty that *characterized by the property that, for any subtoposes* $\mathcal{E}_1 \hookrightarrow \mathcal{E}$ and $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$, $f^{-1}\mathcal{E}_1 \supseteq \mathcal{E}_1' \Leftrightarrow \mathcal{E}_1 \supseteq f_*(\mathcal{E}_1') = \text{Im}(\mathcal{E}_1')$.

Remark:

The map f^{-1} respects the order relation ⊇ and arbitrary intersections of subtoposes.

Universal push-forward of subtoposes:

Theorem (O.C., L.L., to appear in [Engendrement]). – *Let f* : E ′ [→] ^E *be a topos morphism which is "locally connected". Then:* **(i)** *The associated pull-back map f*⁻¹ : {*subtoposes* $\mathcal{E}_1 \hookrightarrow \mathcal{E}$ } → {*subtoposes* $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$ }, $(\mathcal{E}_1 \hookrightarrow \mathcal{E}) \longmapsto (f^{-1}\mathcal{E}_1 \hookrightarrow \mathcal{E}')$ *respects arbitrary unions of subtoposes.* **(ii)** *Equivalently, it has a left adjoint* $f_! : \{subtoposes \mathcal{E}'_1 \rightarrow \mathcal{E}' \} \longrightarrow \{subtoposes \mathcal{E}_1 \rightarrow \mathcal{E} \},\$ $(\mathcal{E}_1' \hookrightarrow \mathcal{E}') \longmapsto (f_! \mathcal{E}_1' \hookrightarrow \mathcal{E}')$ *characterized by the property that, for any subtoposes* $\mathcal{E}_1 \hookrightarrow \mathcal{E}$ and $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$, $\mathcal{E}'_2 \hookrightarrow \mathcal{E}'_3$ $f_! \mathcal{E}'_1 \supseteq \mathcal{E}_1 \Leftrightarrow \mathcal{E}'_1 \supseteq f^{-1} \mathcal{E}_1$. **Corollary.** – *For any topos morphism* $f : \mathcal{E}' \to \mathcal{E}$, the associated pull back map *the associated pull-back map f*⁻¹ : {*subtoposes* $\mathcal{E}_1 \hookrightarrow \mathcal{E}$ } → {*subtoposes* $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$ }
to unione of subtenseses *respects finite unions of subtoposes.*

II. Subtoposes and Grothendieck topologies:

- **The general notion of Galois connection**
	- **-** Equivalences induced by pairs of adjoint functors.
	- **-** The particular case of ordered structures.
	- **-** Pairs of adjoint functors defined by relations.
	- **-** Induced equivalences and generation processes.
- **The duality of sieves and presheaves**
	- **-** Definition of their relation.
	- **-** The induced duality of topologies and subtoposes.
	- **-** Grothendieck topologies as fixed points.
	- **-** Subtoposes as fixed points.
- **The duality of monomorphisms and objects in a topos**
	- **-** Definition of their relation.
	- **-** The induced notion of topology on a topos.
	- **-** The induced duality of topologies and subtoposes.
- **The duality of sieves and monomorphisms of presheaves**
	- **-** Definition of their relation.
	- **-** The induced duality fo topologies and closedness properties.
	- **-** Topologies as fixed points.
	- **-** Closedness properties as fixed points.

Equivalences induced by pairs of adjoint functors:

Proposition. – Consider a pair of adjoint functors
$$
(C \xrightarrow{F} D, D \xrightarrow{G} C)
$$

between locally small categories.
Let C' [resp. D'] be the full subcategory of C [resp. D]
on "fixed points", i.e. objects X of C [resp. Y of D]
such that the canonical adjunction morphism
 $X \longrightarrow G \circ F(X)$ [resp. $F \circ G(Y) \rightarrow Y$]
is an isomorphism.
Then F and G induce converse equivalences
 $C' \xrightarrow{X} D'$.

Proof: If $X \to G \circ F(X)$ is an isomorphism and $Y = F(X)$, then $Y \to F \circ G(Y)$ is also an isomorphism. This implies that the canonical morphism $\overline{F \circ G(Y)} \to \overline{Y}$ is an isomorphism

as the composite

$$
F(X) \to F \circ G \circ F(X) \to F(X) \quad \text{ is } \quad \mathrm{Id}_{F(X)}.
$$

The particular case of ordered structures:

Corollary. – *Consider a pair of partially ordered sets or classes related by a pair of order-preserving maps* $(C, \leq) \xleftarrow{F} (D, \leq)$ *G which are adjoint in the sense that F*(*c*) $\leq d \Leftrightarrow c \leq G(d), \quad \forall c \in C, \forall d \in D.$ **(i)** *If* $C' = \{c \in C \mid G \circ F(c) = c\}$ *and* $D' = \{d \in D, F \circ G(d) = d\}$, *F* and *G* induce inverse bijections $C' \xleftarrow{\sim} D'$. ∼ **(ii)** An element $c \in C$ [resp. $d \in D$] is fixed by $G \circ F$ [resp. by $F \circ G$] *if and only if it is an image in the sense that* $c \in \text{Im}(G)$ *[resp. d* \in Im(*F*)*].* **Remarks:** For any $c \in C$ [resp. $d \in D$], we have $c < G \circ F(c)$ [resp. $F \circ G(d) < d$] and $G \circ F(\pmb{c}) \leq \pmb{c}'$ if $\pmb{c}' \in \pmb{C}'$ and $\pmb{c} \leq \pmb{c}'$ [resp. $d' \leq F \circ G(d)$ if $d' \in D'$ and $d' \leq d$]. **Proof of (ii):** If $c = G(d)$, we have $c < (G \circ F)(c) = G \circ (F \circ G)(d) < G(d) = c$. **L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 20 / 90**

Pairs of adjoint maps defined by relations:

Lemma (O.C., extracted from [Engendrement]). – *Consider an arbitrary relation* $R \longrightarrow T \times S$ *between a pair of sets or classes T and S. Then R defines a pair of adjoint order-preserving maps*

$$
(\mathcal{P}(T),\subseteq) \xrightarrow[\mathcal{G}_R]{\mathcal{F}_R} (\mathcal{P}(S),\supseteq)
$$

between the partially ordered sets or classes

of subsets or subclasses of S and T

$$
F_R(J) = \{s \in S \mid (t, s) \in R, \forall t \in J\} \text{ for any } J \subseteq T, G_R(I) = \{t \in T \mid (t, s) \in R, \forall s \in I\} \text{ for any } I \subseteq S.
$$

Proof:

• It is obvious on the definition that

$$
J_1 \subseteq J_2 \Rightarrow F_R(J_1) \supseteq F_R(J_2),
$$

$$
J_1 \supseteq J_2 \Rightarrow G_R(J_1) \subseteq G_R(J_2).
$$

 $I_1 \supseteq I_2 \Rightarrow G_R(I_1) \subseteq G_R(I_2).$ • For *J* ⊆ *T* and *I* ⊆ *S*, we have equivalences

$$
F_R(J) \supseteq I \Leftrightarrow (t,s) \in R, \forall t \in J, \forall s \in I
$$

$$
\Leftrightarrow J \subseteq G_R(I).
$$

Induced equivalences and generation processes:

Corollary. – *Consider a relation* $R \longrightarrow T \times S$ *and the induced pair of adjoint order-preserving maps*

$$
(\mathcal{P}(\mathcal{T}),\subseteq) \xrightarrow[\mathcal{G}_R]{\mathcal{F}_R} (\mathcal{P}(\mathcal{S}),\supseteq).
$$

Then:

(i) *The maps F^R and G^R induce inverse bijections*

$$
\{J\subseteq T\mid G_{R}\circ F_{R}(J)=J\} \longrightarrow \{I\subseteq S\mid F_{R}\circ G_{R}(I)=I\}.
$$

\n- (ii) For any
$$
J \subseteq T
$$
 [resp. $I \subseteq S$], we have $G_R \circ F_R(J) = J$ [resp. $F_R \circ G_R(I) = I$]
\n- if and only if there exists $I \subseteq S$ [resp. $J \subseteq T$] such that $J = G_R(I)$ [resp. $I = F_R(J)$].
\n- (iii) For any $J \subseteq T$ [resp. $I \subseteq S$], we have $J \subseteq G_R \circ F_R(J)$ [resp. $F_R \circ G_R(I) \supseteq I$]
\n- and $J \subseteq J' \Rightarrow G_R \circ F_R(J) \subseteq J'$ if $J' = G_R \circ F_R(J')$ [resp. $I' \supseteq I \Rightarrow I' \supseteq F_R \circ G_R(I)$ if $I' = F_R \circ G_R(I')$].
\n

Remark: For any $J \subset T$ [resp. $I \subset S$], $G_R \circ F_R(J)$ [resp. $F_R \circ G_R(I)$] can be called the element of Im(G_R) [resp. of Im(F_R)] generated by *J* [resp. *I*].
Lightering is a connectry and logic of subtoposes **L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 22 / 90**

The duality of sieves and presheaves:

Definition. – *Consider an essentially small category* C*, endowed with the Yoneda functor* $y: \mathcal{C} \hookrightarrow \mathcal{C} = \{ \text{category of presheaves } \quad \mathcal{C}^{\text{op}} \to \text{Set} \}.$ *Let T be the class of pairs* (*X*, *C*) *consisting in* $\int X =$ *object of* C , $C =$ *<u>sieve</u> on X = subpresheaf of* $y(X)$ *. Let S be the class of presheaves P on* C*. We shall call "duality of sieves and presheaves" the relation ^R* ,−[→] *^T* [×] *^S consisting in pairs of elements* $(C$ → $v(X), P$ *such that, for any morphism* $X' \xrightarrow{X} X$ of C , the restriction map $P(X') = \text{Hom}(y(X'), P) \longrightarrow \text{Hom}(C \times_{y(X)} y(X'), P)$ *is one-to-one.* **Consequence:** This relation induces adjoint order-preserving maps

$$
(\mathcal{P}(T),\subseteq) \xrightarrow[\mathcal{G}_R]{\mathcal{F}_R} (\mathcal{P}(S),\supseteq).
$$

The induced duality of topologies and subtoposes:

Theorem (extracted from [Engendrement]). –

- **(i)** A subclass J of $T = \{ \text{sieves } C \text{ on objects } X \text{ of } C \}$ *is a fixed point of the duality of* T with $S = \{presheaves P on C\}$ *if and only if J is a Grothendieck topology.*
- **(ii)** *A subclass I of S is a fixed point of the duality of T and S if and only if I is the class of objects of a subtopos* $\mathcal E$ of $\widehat{\mathcal C}$ *.*

Corollary. –

(i) *The duality of sieves and presheaves on* C *induces a one-to-one correspondence between Grothendieck topologies J on* C *and subtoposes of* ^Cb*.*

(ii) *For any family J of sieves,* $G_R \circ F_R(\overline{J})$ *is the topology generated by J.*

(iii) *For any class I of presheaves on* C*,*

 $F_R \circ G_R(I)$ *is the smallest subtopos of* \widehat{C} *which contains I.*

Precise identification of fixed points:

Theorem. – A class $J \subset T$ of sieves $(C \hookrightarrow y(X))$ on C *is a fixed point of the duality of T with S if and only if it is a topology, i.e. verifies: (Max) For any object X of* C*, the maximal sieve y*(*X*) *belongs to J. (Stab)* If $(C \hookrightarrow y(X))$ *belongs to J, then for any morphism* $x : X' \to X$, $(x^*C = C \times_{y(X)} y(X') \hookrightarrow y(X'))$ also belongs to J.
 $\mathcal{L}(C \subseteq \mathcal{L}(X'))$ belongs to $\mathcal{L}(C \subseteq \mathcal{L}(X'))$ *(Trans) If* $(C' \hookrightarrow y(X))$ *belongs to J, a sieve* $(C \hookrightarrow y(X))$ *belongs to J if, for any morphism* $X' \xrightarrow{X} X$ *belonging to C'*, *(x*^{*x*}) *c* \overline{X} *x*^{*i*} \overline{Y} $(x^*C = C \times_{y(X),x} y(X') \hookrightarrow y(\overline{X'}))$ belongs to J.

Theorem. – A class $I \subseteq S$ of presheaves on C is a fixed point of the duality *if and only if the full subcategory* $\mathcal E$ *of* $\widehat{\mathcal C}$ *on objects of I is a "subtopos" in the sense that:*

- (1) $\overline{The\; embedding\; functor\; \mathcal{E} \longrightarrow \hat{\mathcal{C}} \; \underline{has\; a\; left\;-adjoint}\; j^*.$
- **(2)** *This left-adjoint j^{*}:* $\widehat{\mathcal{C}} \to \mathcal{E}$ *respects finite limits.*
- **(3)** An object P of \widehat{C} is in \mathcal{E} , i.e. is an element of I, *if and only if the canonical morphism* P → $j_* \circ j^*P$ *is an isomorphism.*

Any class of presheaves defines a Grothendieck topology:

• Consider a class *I* of presheaves *P* on C. We need to verify that the $\underline{\text{class}}$ J of $\underline{\text{sieves}}$ C on objects X of $\mathcal C$ such that for any morphism $X' \stackrel{x}{\longrightarrow} X$ and any $P \in I$, the restriction map $P(X') = \text{Hom}(y(X'), P)$ → $\text{Hom}(C \times_{y(X)} y(X'), P)$ is <u>one-to-one</u> is a topology.

• Any intersection of topologies is a topology.

So it is enough to consider the case where *I* has a unique element *P*.

- The above condition is verified by maximal sieves $C = y(X)$.
- By definition, it is stable under base change by any $X' \stackrel{x}{\rightarrow} X$.

• Consider sieves $C \hookrightarrow y(X)$ and $C' \hookrightarrow y(X)$ such that $C' \in J$ and $x^*C = C \times_{y(X)} y(X') \in J$, $\forall (X' \stackrel{x}{\longrightarrow} X) \in C'$. As these conditions are respected by base change, we are reduced to check that the map $P(X) = \text{Hom}(y(X), P) \longrightarrow \text{Hom}(C, P)$ is one-to-one.

For any <u>morphism</u> $C \xrightarrow{\rho} P$, the composite induced by any $(X' \xrightarrow{x} X) \in C'$ $x^* C = \overline{C \times_{y(X)}} y(X') \longrightarrow C \longrightarrow P$ uniquely lifts to a morphism $y(X') \to P$. This defines a morphism $C' \to P$ which lifts to $y(X) \to P$. The composite $C \hookrightarrow y(X) \to P$ coincides with $C \xrightarrow{P} P$ as they coincide on $C \times_{y(X)} C'$.

Any class of sieves defines a subtopos:

• If *J* is a class of sieves $C \hookrightarrow y(X)$ on objects X of C, the class of presheaves *FR*(*J*) associated with *J* is the same as the class of presheaves associated with $G_R \circ F_R(J)$.

- So we may suppose that *J* is a topology.
- Then $F_R(J)$ is the class of *J*-sheaves on C. The full subcategory \widehat{C}_J on $F_R(J)$ is a subtopos

$$
(\widehat{C} \xrightarrow{j^*} \widehat{C}_J, \widehat{C}_J \xrightarrow{j_*} \widehat{C}).
$$

• Furthermore, in that case, *J* is the class of sieves $C \hookrightarrow y(X)$ such that $i^*C \longrightarrow i^*C \longrightarrow i^*C$ is an inomorphism $j^*C \longrightarrow j^* \circ y(X)$ is an isomorphism
b that for any *L* aboat F

or, equivalently, such that for any *J*-sheaf *E*, the restriction map

 $Hom(y(X), E) \xrightarrow{\sim} Hom(C, E)$ is <u>one-to-one</u>.

• This proves that, if *J* is a topology,

$$
\overline{G_R \circ F_R}(J) = J.
$$

• In other words, a subclass *J* of $T = \{$ sieves $C \hookrightarrow v(X) \}$ is a fixed point of *G^R* ◦ *F^R* if and only if it is a topology.

Any subtopos is a fixed point of the duality relation:

• Consider a subtopos of $\widehat{\mathcal{C}}$ defined by a class *I* of presheaves

\n- \n For any size
$$
C \rightarrow y(X)
$$
, the restriction map\n $\text{Hom}(y(X), j_*E) \rightarrow \text{Hom}(C, j_*E)$ is one-to-one for any object *E* of *E* if and only if the induced morphism\n $j^*C \rightarrow j^*y(X)$ is an isomorphism.\n
\n- \n This condition defines a topology $J = G_R(I)$.\n
\n- \n We have to check that, conversely, any *J*-sheaf *E* is an object of *E*, i.e., verifies *E* → *j_* \circ j^*E*.\n
\n- \n Consider the diagonal embedding $E \rightarrow E \times_{j_* \circ j^*E} E$.\n
\n- \n For any morphism $y(X) \rightarrow E \times_{j_* \circ j^*E} E$, its fiber product with the diagonal *E* is a sieve\n $C \rightarrow y(X)$ which belongs to *J*.\n
\n- \n So the morphism $C \rightarrow E$ uniquely lifts to $y(X) \rightarrow E$.\n
\n- \n This proves that $E \rightarrow j_* \circ j^*E$ is a monomorphism.\n
\n- \n Its fiber product with any morphism $y(X) \rightarrow j_* \circ j^*E$ is a size $C \rightarrow y(X)$ which belongs to *J*.\n
\n- \n So the morphism $C \rightarrow E$ uniquely lifts to $y(X) \rightarrow E$ which means that $E \rightarrow j_* \circ j^*E$ is an isomorphism.\n
\n

The duality of monomorphisms and objects in a topos:

Definition. – *Consider a topos* E*. Consider the class T of monomorphisms of* E $C \longrightarrow X$. *Consider the class S of objects E of* E*. We shall call "duality of monomorphisms and objects" in* $\mathcal E$ *the relation* $R \longrightarrow T \times S$ *consisting in pairs of elements* $(C \hookrightarrow X, E)$ *such that, for any morphism* $X' \to X$ *of* \mathcal{E} *,* the restriction map *the restriction map* $Hom(X', E) \longrightarrow Hom(C \times_X X', E)$ *is <u>one-to-one</u>.*

This relation induces a pair of adjoint order-preserving maps

$$
(\mathcal{P}(T),\subseteq) \xrightarrow[\mathcal{G}_R]{\mathcal{F}_R} (\mathcal{P}(S),\supseteq).
$$

The induced notion of topology on a topos:

Proposition. –

A subclass $J \subset T = \{monomorphisms C \hookrightarrow X \text{ of } \mathcal{E}\}\$ *is a fixed point of the duality of* T and $S = \{ \text{objects of } \mathcal{E} \}$ *if and only if it is a topology of* E *in the sense that it verifies the conditions:*

 $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ *(Max)* Any isomorphism $C \stackrel{\sim}{\longrightarrow} X$ is an element of J.
∠∠ tob) Beeg abongs by any marphism $X' \rightarrow X$ of C *(Stab) Base change by any morphism* $X' \to X$ *of* $\mathcal E$ *transforms elements* $C \hookrightarrow X$ *of J into elements* $C \times_X X' \hookrightarrow X'$ *of J.*
A management is much a set of J. *(Trans) A monomorphism* \overline{C} \longrightarrow *X is in J if there exist* $(C' \hookrightarrow X) \in J$
and a globally enjmarphic for *and a globally epimorphic family* $(X_k \to C')_{k \in K}$ *such that all fiber products* $C \times_Y X_k \longrightarrow X_k$, $k \in K$, *belong to J.*

The induced notion of subtopos of a topos:

Proposition. –

A subclass $I \subseteq S = \{objects \in B \}$ *is a fixed point of the duality of S and T = {monomorphisms of* \mathcal{E} *} if and only if the full subcategory* \mathcal{E}_1 *of* \mathcal{E} *on objects of I is a subtopos in the sense that it verifies the conditions:*

 $\sqrt{ }$ (1) *The embedding functor* $j_* : \mathcal{E}_l \hookrightarrow \mathcal{E}$ *has a left adjoint* j^* *.*

 $\overline{}$ (2) *This left adjoint functor j^{*}:* $\mathcal{E} \to \mathcal{E}_1$ *respects finite limits.*

 $\overline{}$ (3) *An objet E of* E *belongs to I if and only if the canonical morphism ^E* [−][→] *^j*[∗] ◦ *^j* [∗]*E is an isomorphism.*

The induced duality of topologies and subtoposes:

We still consider the pair of adjoint order-preserving maps

$$
(\mathcal{P}(\mathcal{T}),\subseteq)\xrightarrow[\mathit{G_{\mathit{R}}}] \mathcal{P}(\mathcal{S}),\supseteq)
$$

defined by the duality *R* of $T = \{monomorphisms of \mathcal{E}\}\$ and $S = \{ \text{objects of } \mathcal{E} \}.$

Corollary. –

(i) *This duality induces a one-to-one correspondence between topologies on the topos* E and subtoposes $(\mathcal{E} \xrightarrow{f^*} \mathcal{E}', \mathcal{E}' \xrightarrow{f^*} \mathcal{E})$ of \mathcal{E} . **(ii)** For any subclass J of monomorphisms $C \hookrightarrow X$ of \mathcal{E} , *G^R* ◦ *FR*(*J*) *is the topology generated by J, i.e. the smallest topology which contains J.* **(iii)** *For any subclass I of objects E of* E*,* $F_R \circ G_R(I)$ *is the subtopos generated by I,*

i.e. the smallest subtopos of $\mathcal E$ *which contains I.*

The duality of sieves and monomorphisms of presheaves:

Definition. –

Consider an essentially small category C , endowed with $y : C \hookrightarrow \widehat{C}$. *Consider the class T* = {*sieves* $C \hookrightarrow y(X)$ }.

Consider the class S of monomorphisms of presheaves on C

$$
Q\longleftrightarrow P\,.
$$

^Q ,−[→] *^P* . *We shall call "duality of sieves and subpresheaves" on* C *the relation*

$$
R\longleftrightarrow T\times S
$$

consisting in pairs of elements

$$
\overline{(C} \hookrightarrow y(X), \ Q \hookrightarrow P)
$$

such that:

 \int *for any morphism* $X' \xrightarrow{x} X$ *of* C *and <u>any element</u>* $p \in P(X')$, \int $\left($ *if* $x'^{*}(p) \in Q(X'')$, \forall $(X'' \xrightarrow{x'} X') \in x^*C$. *one has* $p \in Q(X')$

This relation induces a pair of adjoint order-preserving maps

$$
(\mathcal{P}(\mathcal{T}),\subseteq) \xrightarrow[\mathcal{G}_R]{} \mathcal{P}(\mathcal{S}),\supseteq).
$$

Topologies and closedness properties as fixed points:

Theorem (extracted from [Engendrement]). – *(i)* A subclass $J ⊂ T = {$ {sieves $C ⊕ y(X)}$ } *is a fixed point of the duality of T and S = {subpresheaves* $Q \hookrightarrow P$ *} if and only if J is a topology on* C*. (ii) A subclass I* ⊆ *S is a fixed point of the duality of T and S if and only if I is a "closedness property" in the sense that if verifies the following conditions:* $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ (1) *Isomorphisms Q* [∼]−[→] *P belong to I.* (2) *Base change by any morphism* $P' \rightarrow P$ *of* \widehat{C} *because the vector of* \widehat{C} *and* P *which has transforms subpresheaves* $Q \hookrightarrow P$ which belong to I *into subpresheaves* $Q \times_p P' \hookrightarrow P'$ *which belong to I.*
For any family of subpresheaves (3) *For any family of subpresheaves* $Q_k \longrightarrow P$, $k \in K$, which belong to I, *their intersection* $\bigcap_{j\in K} Q_k \longleftrightarrow P$ still <u>belongs to I</u>. *k*∈*K* (4) *If* \overline{Q} \hookrightarrow *P* denotes the smallest element of I containing some $Q \hookrightarrow$ *P*, *one has for any morphism* $P' \rightarrow P$ *of* \widehat{C} $\overline{P' \times_P Q} = P' \times_P \overline{Q}$. **L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 34 / 90**

The induced duality of topologies and closedness properties:

Corollary. –

(i) *The "duality of sieves and subpresheaves" on* C

induces a one-to-one correspondence between Grothendieck topologies of C *and closedness properties on subpresheaves on* C*.*

(ii) For any class J of sieves $C \hookrightarrow y(X)$ on objects X of C,

 $G_R \circ F_R(J) = \overline{J}$ *is the topology generated by J,*

i.e. the smallest topology containing J.

Furthermore, J and J define the same "closedness property" of subpresheaves and induce the same operation of closure of subpresheaves

$$
(Q \hookrightarrow P) \longmapsto (\overline{Q} \hookrightarrow P)
$$

used by base change.

which, in particular, is respected by base change along any P′ [→] *P, in the sense that*

$$
\overline{Q\times_P P'}=\overline{Q}\times_P P'.
$$

(iii) For any class *I* of subpresheaves $Q \hookrightarrow P$ on C,

 $F_R \circ G_R(I) = \overline{I}$ *is the smallest "closure property" which contains I.*

Furthermore, I and I define the same topology on C

$$
G_R(I)=G_R(\overline{I})\,.
$$

L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 35 / 90

Any class of subpresheaves defines a topology:

• Consider a class *I* of subpresheaves $Q \hookrightarrow P$. We need to verify that the class *J* of sieves $C \hookrightarrow \gamma(X)$ such that \int for <u>any morphism</u> $X' \stackrel{x}{\longrightarrow} X$ and <u>any</u> $p \in P(X')$ one has $p \in Q(X')$ if $x'^*(p) \in Q(X'')$, $\forall (X'' \xrightarrow{x'} X') \in x^*C$,

is a topology.

• As any intersection of topologies is a topology,

it is enough to consider the case where *I* has a unique element $Q \hookrightarrow P$.

- The above condition is verified by maximal sieves $C = v(X)$.
- By definition, this condition is stable under base change by any morphism *X* ′ *^x*−[→] *^X*.
- Consider <u>sieves</u> $C \hookrightarrow y(X)$ and $C' \hookrightarrow y(X)$ such that

$$
C' \in J \text{ and } x^*C \in J, \forall (X' \xrightarrow{X} X) \in C'.
$$

 $C' \in J$ and $x^*C \in J$, $\forall (X' \stackrel{x}{\longrightarrow} X) \in C'.$
As these properties are stable under base change,

it is enough to prove that any element $p \in P(X)$

such that $x^*(p) \in Q(X')$, $\forall (X' \stackrel{x}{\to} X) \in C$, is in $Q(X)$.

• For any (*X* ′ *^x*−[→] *^X*) [∈] *^C* ′ , we have *x* [∗]*C* ∈ *J*

and $x' \circ x^*(p) \in Q(X'')$, $\forall (X'' \xrightarrow{x'} X') \in x^*C$, which implies that $x^*(p) \in Q(X')$. As $C' \in J$, we conclude that $p \in Q(X)$. This means that *C* ∈ *J*.

• So *J* verifies (Trans) in addition to (Max) and (Stab).
Any class of sieves defines a "closedness property":

• Consider a class *J* of sieves and its image

$$
I = F_R(J) = \left\{ Q \hookrightarrow P \middle| \begin{array}{l} \forall (C \hookrightarrow y(X)) \in J, \ \forall (X' \xrightarrow{x} X), \\ \forall p \in P(X'), \text{ one has } p \in Q(X') \\ \text{if } x''(p) \in Q(X''), \ \forall (X'' \xrightarrow{x'} X') \in x^*C \end{array} \right\}
$$

- It is obvious from this definition that
	-
- $\left| \right|$ − all isomorphisms $Q \xrightarrow{\sim} P$ belong to *I*,

− the class *I* is respected by all base changes $P' \rightarrow P$,

it is also atak with intersection of elements Q
- \mathcal{L} [−] it is also stable under intersections of elements *^Q^k* ,[→] *^P*, *^k* [∈] *^K*.
- We already know that $G_R \circ F_R(J) = \overline{J}$ is a topology and $I = F_R(\overline{J})$.

• This implies that for any subpresheaf $Q \hookrightarrow \overline{P}$ the smallest element of *I* which contains *Q ^Q* ,−[→] *^P*

is characterized by the following formula at any object *X* of C

$$
\overline{Q}(X) = \{p \in P(X) \mid \exists C \in \overline{J}(X), x^*(p) \in Q(X'), \forall (X' \xrightarrow{X} X) \in C\}.
$$

• This formula implies that, for <u>any morphism</u> $P' \to P$,

 $\overline{Q \times_P P'} = \overline{Q} \times_P P'$ as subpresheaves of P' .

• We conclude that $I = F_R(J) = F_R(\overline{J})$ is a "closedness property".

.

Topologies and "closedness properties" as fixed points:

• Consider a topology *J* and the associated "closedness property"

$$
I=F_R(J).
$$

It defines a "closure operation" on subpresheaves

$$
(\mathsf{Q}\hookrightarrow\mathsf{P})\longmapsto(\overline{\mathsf{Q}}\hookrightarrow\mathsf{P})
$$

where, for any object *X* of C,

 $\overline{Q}(X) = \{p \in P(X) \mid \exists C \in \overline{J}(X), x^*(p) \in Q(X'), \forall (X' \stackrel{x}{\longrightarrow} X) \in C\}.$ If $C \hookrightarrow y(X)$ is a sieve belonging to $G_R \circ F_R(J) = G_R(I)$, one has for any subpresheaf $Q \hookrightarrow P$ and any morphism $y(X) \rightarrow P$ the implication $C \subset Q \times_P \gamma(X) \Rightarrow \overline{Q} \times_P \gamma(X) = \gamma(X)$. This means that $\overline{C} = y(X)$ or, equivalently, $C \in J$. We conclude that $J = G_R \circ F_R(J)$ is a fixed point. • Consider a "closedness property" *I* and the associated topology $J = G_R(I)$. A sieve $C \hookrightarrow y(X)$ belongs to J if and only if, for any morphism $X' \to X$
and any $Q \leftrightarrow V(X')$ which belongs to l and any $Q \hookrightarrow y(X')$ which belongs to *I*, one has the implication $x^*C \subseteq Q \Rightarrow Q = y(X')$. This means that $C \in J$ if and only if $\overline{C} = y(X)$. We conclude that $I = F_R \circ \overline{G_R(I)}$ is a fixed point.

III. Generation of topologies and provability:

- **A closed formula for the generation of topologies**
	- **-** The dualities of sieves with presheaves and with subpresheaves.
	- **-** Sieves and closedness properties of subpresheaves.
	- **-** A generation formula based on closure operations.
	- **-** Application to joins of topologies.
	- **-** Application to finite products of toposes.
- **A generation formula in terms of multicoverings**
	- **-** The notion of multicovering of an object.
	- **-** Explicitation of closure operations of subpresheaves.
	- **-** An explicit formula for generated topologies.
- **Topological interpretations of provability problems**
	- **-** Topological interpretations of geometric axioms.
	- **-** Reduction to atomic and Horn formulas.
	- **-** Constructive interpretations of axioms in terms of covering sieves.
	- **-** The problem of presentations of classifying toposes.
	- **-** The case of presheaf type theories.
	- **-** The case of cartesian theories.
	- **-** The case of theories without functions symbols and without axioms.

Reminder on the duality of sieves and presheaves:

• For any essentially small category \mathcal{C} , there is a duality between $T = \{ (C \hookrightarrow y(X)) \mid X = \text{object of } C, C \hookrightarrow y(X) \text{ in } \widehat{C} \}$
and $S = \{ \text{presheaves } (P : C^{\text{op}} \to \text{Set}) = \text{objects of } \widehat{C} \}$ and $S = {presheaves (P : C^{op} \rightarrow Set) = objects of C}$
fined by the relation $P_{\mathcal{L}} \rightarrow \mathcal{L} \times S$ defined by the relation $R \longrightarrow T \times S$ consisting in pairs $(C \hookrightarrow y(X), P)$ such that

 $\forall (X' \xrightarrow{X} X), P(X') = \text{Hom}(y(X'), P) \longrightarrow \text{Hom}(x^*C, P)$ is one-to-one.

• This duality induces a pair of adjoint order preserving maps

$$
\mathcal{P}(\mathcal{T}) \xrightarrow[c_R]{F_R} \mathcal{P}(\mathcal{S})
$$

such that

- **-** for any $J \subset T$, $F_R(J)$ is a subtopos of \widehat{C} and $G_R \circ F_R(J)$ is the topology generated by *J*.
- **-** for any *I* ⊂ *S*, $G_R(I)$ is a topology on C and $F_R \circ G_R(I)$ is the subtopos generated by *I*.
- This induces a one-to-one correspondence

$$
\left\{\frac{\text{topologies}}{\text{on }\mathcal{C}}\right\} \qquad \xleftarrow[\frac{F_R}{\hat{G}_R}] \qquad \left\{\frac{\text{subtoposes}}{\text{of }\hat{\mathcal{C}}}\right\}
$$

.

Reminder on the duality of sieves and subpresheaves:

• For any essentially small category \mathcal{C} , there is a duality between $T = \{ (C \hookrightarrow y(X)) \mid X = \text{object of } \overline{C}, C = \text{sieve on } X \}$ and $S' = \{$ monomorphisms $(Q \hookrightarrow P)$ in \widehat{C} defined by the <u>relation</u> $R' \hookrightarrow T \times S'$
consisting in poirs $(C \leftrightarrow V(X), Q \leftrightarrow R)$ and consisting in pairs $(C \hookrightarrow \gamma(X), Q \hookrightarrow P)$ such that

 \forall $(X' \xrightarrow{X} X)$, \forall $p \in P(X')$, $[x'^*(p) \in Q(X'')$, \forall $(X'' \xrightarrow{X'} X') \in x^*C$ \Rightarrow $p \in Q(X')$.

• This duality induces a pair of adjoint order preserving maps

$$
\mathcal{P}(T) \xrightarrow[c_{R'}]{F_{R'}} \mathcal{P}(S')
$$

such that

- **-** for any *J* ⊆ *T*, *F^R* ′ (*J*) is a closedness property and $G_{R'} \circ F_{R'}(J)$ is the topology generated by J,
- **-** for any *I* ⊆ *S* ′ , *G^R* ′ (*I*) is a topology on C and $F_{R'} \circ G_{R'}(I)$ is the closedness property generated by *I*.
- This induces a one-to-one correspondence

topologies	$\frac{F_{R'}}{\sigma_{\tilde{H}'}}$	Closedness properties of subpresheaves $Q \hookrightarrow P$	
L. Lafforgue	Geometry and logic of subtoposes	September 3-6, 2024	41/90

Reminder on topologies and closedness properties:

Definition. – *Any* $J \subset T = \{(C \hookrightarrow y(X)) | X =$ *object of* C, $C =$ *sieve on* X $\}$ *is a topology if and only if*

- *J contains <u>maximal sieves</u>* $J = y(X)$ $\stackrel{=}{\longrightarrow}$ $y(X)$ *,* $\stackrel{X}{\longrightarrow}$
- \int • *J is stable by pull-backs along morphisms X* ′ *^x* −−[→] *X,*
	- *a sieve C* \hookrightarrow *y*(*X*) *belongs to J if there exists* (*C'* \hookrightarrow *y*(*X*)) ∈ *J* $\mathsf{such\ that\ } (\mathsf{x}^*\mathsf{C} \hookrightarrow \mathsf{y}(\mathsf{X}')) \in \mathsf{J}, \forall \ (\mathsf{X}' \stackrel{\mathsf{x}}{\longrightarrow} \mathsf{X}) \in \mathsf{C}'.$

Definition. –

 $\sqrt{ }$

 $\overline{\mathcal{L}}$

A property of subpresheaves $I \subseteq S' = \{(Q \hookrightarrow P) = \text{monomorphism of } C\}$ *is a "closedness property" if and only if:*

- *isomorphisms Q* [∼]−−[→] *P belong to I,*
- $\begin{array}{c} \hline \end{array}$ • I is stable by pull-backs along morphisms $P' \to P$ of $\widehat{\mathcal{C}}$,
	- *I is stable under intersections in the sense that*

$$
(Q_k \hookrightarrow P) \in I, \ \forall k \in K \Rightarrow \left(\bigcap_{k \in K} Q_k \hookrightarrow P\right) \in I,
$$

if, for any $Q \hookrightarrow P$ *in C,* $\overline{Q} \hookrightarrow P$ denotes the smallest element of I containing Q, *we have for any morphism* $P' \rightarrow P$ $\overline{P' \times_P Q} = P' \times_P \overline{Q}$ *.*
Latitorius set and logic of subtoposes **L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 42 / 90**

Sieves and covering presieves:

• A sieve on an object X of C is a subobject

 $C \hookrightarrow y(X)$ in $C \longrightarrow C \hookrightarrow f(X)$ in $C \longrightarrow f(X) \longrightarrow f(X)$

 $\frac{\text{such that, for any morphism } X'' \xrightarrow{x'} X',}{\text{for any morphism } X'' \xrightarrow{x'} X',}$

$$
(X' \xrightarrow{x} X) \in C \Rightarrow (x \circ x' : X'' \to X' \to X) \in C.
$$

Definition. – *A presieve on an object X of* C *is a family of morphisms* $(X_i: X_i \longrightarrow X)_{i \in I}$.

Remarks:

• Any such presieve generates a sieve which is

 $\{X' \xrightarrow{X} X \mid X \text{ factorizes though at least some } X_i \to X, i \in I\}.$

• Any sieve is generated by presieves.

Definition. –

Let $J \subset T = \{ (C \hookrightarrow y(X)) \mid \text{sieves } C \text{ on objects } X \text{ of } C \}$ be a topology

or, more generally, a family of sieves stable under pull-backs along all X' $\stackrel{x}{\longrightarrow}$ *X.*

Then a presieve $(X_i \xrightarrow{X_i} X)_{i \in I}$ *is called J-covering if and only if* i *is canonized air a container some* $(G_i \xrightarrow{X_i} X) \subseteq I$ *its generated sieve contains some* $(C \rightarrow y(X)) \in J$.
 LLATforque (**Geometry and logic of subbooses**

Stabilisation of families of sieves:

Definition. – *A family of sieves* $J \subset T = \{C \hookrightarrow \gamma(X)\}$ *will be called "stable" if it is respected by pull-backs along morphisms* $X' \stackrel{x}{\longrightarrow} X$ *of* C *.*

Lemma. – *Any family of sieves* $J \subset T = \{C \hookrightarrow y(X)\}$ *generates a stable family which is*

 $J_s = \{C' \hookrightarrow y(X') \mid \exists (X' \xrightarrow{x} X), \exists (C \hookrightarrow y(X)) \in J, C' = x^*C\}.$

Remarks:

- One has the inclusions *J* ⊆ *J^s* ⊆ *J* = topology generated by *J* and they define
	- the same subtopos $F_R(J) = F_R(J_s) = F_R(\overline{J})$,
	- the same closedness property $F_{R'}(J) = F_{R'}(J_s) = F_{R'}(\overline{J}).$
- A subpresheaf *^Q* ,−[→] *^P* is *J*-closed, or *Js*-closed, or *J*-closed if and only if, for any $p \in P(X)$ and any $(C \hookrightarrow \gamma(X)) \in J_s$, $x^*(p) \in Q(X')$, $\forall (X' \xrightarrow{x} X) \in C \Rightarrow p \in Q(X)$.
- The family *J* induces a notion of *Js*-covering presieves.

A closed formula for generated topologies:

Theorem (O.C., L.L., see [Engendrement] improving a formula of [TST]). – *Let* $J \subset T = \{C \hookrightarrow y(X)\}$ *be a class of sieves on objects X of C. Let J^s be the stabilisation of J*

 $J_s = \{C' \hookrightarrow y(X') \mid \exists (X' \xrightarrow{X} X), \exists (C \hookrightarrow y(X)) \in J, C' = x^*C\}$.

the the tender is an concepted by *Let* I . Then a single on an objective *Let J be the topology on* C *generated by J or Js. Then a sieve on an object X of* C , $C \longrightarrow y(X)$ *belongs to* \overline{J} *if and only if any sieve* $C' \hookrightarrow y(X)$ *such that*

 $\sqrt{ }$ • *C* ′ *contains C,*

 $\overline{\mathcal{L}}$

 $\Bigg\}$ • *C'* is J_s -closed in the sense that an arbitrary morphism $x : X' \longrightarrow X$
belongs to C' if the since on X' *belongs to C* ′ *if the sieve on X* ′

$$
\{X'' \xrightarrow{x'} X' \mid (x \circ x' : X'' \to X) \in C'\}
$$

−−[→] *^X contains an element of Js,*

 \iint_S *is the maximal sieve* $y(X) \stackrel{=} \longrightarrow y(X)$.

Proof: We already know that *J*, *J^s* and *J* define the same "closedness property" on subpresheaves $Q \hookrightarrow P$ and so the same "closure operation" $(Q \hookrightarrow P) \mapsto (\overline{Q} \hookrightarrow P)$. The theorem statement means that $C \hookrightarrow y(X)$ belongs to *J* if and only if $\overline{C} = y(X)$. $C = v(X)$.

Application to joins of topologies:

Corollary. – *Let* $(J_k)_{k \in K}$ *be a family of topologies on C.* Let $J = \bigvee J_k$ *k*∈*K be the smallest topology which contains all* J_k *'s,* $k \in K$ *. Then a sieve on a object X of* $C \longrightarrow v(X)$ *belongs to J if and only if any sieve* $C' \hookrightarrow y(X)$ *such that*

- *C* ′ *contains C,*
	- *C* ′ *is J^k -closed for any k* ∈ *K ,*

 \therefore *is the maximal sieve* $y(X) \stackrel{=}{\longleftrightarrow} y(X)$.

Proof:

- Indeed, the class J_s of sieves $C \hookrightarrow \gamma(X)$ defined as the union of the classes J_k , $k \in K$, is stable under pull-backs along morphisms $X' \xrightarrow{x} X$ of C. By definition, it generates the topology *J*.
- To conclude, we observe that a sieve $C' \hookrightarrow y(X)$
is *L* closed if and only if it is *L* closed for any $k \in K$ is J_s -closed if and only if it is J_k -closed for any $k \in K$.

Application to the construction of finite products of toposes:

Theorem. – *Consider topologies* J_1, \dots, J_n *on essentially small categories* C_1, \dots, C_n *. Consider the product category* $\mathcal{C} = \mathcal{C}_1 \times \cdots \times \mathcal{C}_n$ *endowed with the induced topologies* J_1, \cdots, J_n . *Then the product topos in the* 2*-category of toposes* $\mathcal{E} = (\mathcal{C}_1)_{J_1} \times \cdots \times (\mathcal{C}_n)_{J_n}$ *can be constructed as the topos of sheaves on the product category* $\mathcal{C} = \mathcal{C}_1 \times \cdots \times \mathcal{C}_n$ *endowed with the topology J for wich a sieve* $C \nightharpoonup \overline{y(X_1 \times \cdots \times X_n)}$ *belongs to J if and only if any sieve* $C' \hookrightarrow y(X_1 \times \cdots \times X_n)$ *such that*  • *C* ′ *contains C,* • *C* ′ *is J^k -closed for any k* ∈ *K , is the <u>maximal sieve</u>* $y(X_1 \times \cdots \times X_n) \stackrel{=}{\longrightarrow} y(X_1 \times \cdots \times X_n)$. This theorem is a consequence of the previous theorem and: **Proposition**. – *Let* C *and* D *be essentially small categories. Then the presheaf*

topos $\widetilde{\mathcal{C}} \times \widetilde{\mathcal{D}}$ *is a product of the presheaf toposes on* C *and* D, $\widetilde{\mathcal{C}} \times \widehat{\mathcal{D}}$ *.*

Products of toposes and products of topological spaces:

- To any topological space *X* are associated
- $\sqrt{ }$ \int the category C_X of open subsets of X ,
	- the topology J_X on C_X defined by the usual notion of covering,

$$
\begin{cases} - & \text{the topos}{\mathcal E}_X = \overline{({\mathcal C}_X)}_{J_X} \text{ of sheaves on } X. \end{cases}
$$

This defines a <u>functor</u> {category of topological spaces} \rightarrow {category of toposes}.

• In particular, any topological spaces X_1, \cdots, X_n define a topos morphism

 $\mathcal{E}_{X_1 \times \cdots \times X_n} \longrightarrow \mathcal{E}_{X_1} \times \cdots \times \mathcal{E}_{X_n}.$

Proposition. –

For the natural morphism $\mathcal{E}_{X_1 \times \cdots \times X_n} \longrightarrow \mathcal{E}_{X_1} \times \cdots \times \mathcal{E}_{X_n}$ to be an isomorphism,
it outlines that all fasters X is avaint passibly and are locally compact. *it suffices that all factors Xⁱ 's, except possibly one, are locally compact.*

Remark: If $\mathcal{E}_{X_1 \times \cdots \times X_n} \longrightarrow \mathcal{E}_{X_1} \times \cdots \times \mathcal{E}_{X_n}$ is an isomorphism of toposes, the toposes, the topos $\mathcal{E}_{X_1 \times \cdots \times X_n}$ of sheaves on $X_1 \times \cdots \times X_n$ can be constructed as the topos of sheaves on the product category C_X _{\times} \cdots \times C_X _{\times} endowed with the topology $J = J_{X_1} \vee \cdots \vee J_{X_n}$ for which a sieve $\overline{C} \longrightarrow y(U_1 \times \cdots \times U_n)$ belongs to *J* if and only if any sieve $C' \hookrightarrow y(U_1 \times \cdots \times U_n)$ such that $\int \bullet$ *C'* contains *C*, • *C'* is J_{X_i} -closed for any *i*, $1 \le i \le n$, is the maximal sieve on $U_1 \times \cdots \times U_n$.

Multicoverings:

- Let *J* be a class of sieves $C \hookrightarrow \gamma(X)$ of objects X of C. Let *J^s* be the "stabilisation" of *J*.
- A J_s -covering of an object *X* is a presieve $(x_i: X_i \longrightarrow X)_{i \in I}$
where appearated ciove is maximal at earteins an element of *I* whose generated sieve is maximal or contains an element of *Js*.

Definition. – A J_s -multicovering of an object X of C is a sequence $\dots \longrightarrow \mathfrak{X}_n \stackrel{f_n}{\longrightarrow} \mathfrak{X}_{n-1} \longrightarrow \dots \stackrel{f_2}{\longrightarrow} \mathfrak{X}_1 \stackrel{f_1}{\longrightarrow} \mathfrak{X}_0$

where

- *each* \mathfrak{X}_k , $k \in \mathbb{N}$, is a set of morphisms of C,
- all morphisms in \mathfrak{X}_0 have target X and make up a J_s -covering of X,
- *for any n* > 1 *and x_n* \in *X_n*, *the target of* x_n *is the source of* $f_n(x_n) \in \mathfrak{X}_{n-1}$,
- *for any n* ≥ 1 *and xn*−¹ ∈ *Xn*−1*, the fiber* ${X_n \in \mathfrak{X}_n \mid f_n(X_n) = X_{n-1}}$

is empty or makes up a Js-covering of the source of xn−1*,*

• *there is no infinite sequence* $x_n \in X_n$, $n \in \mathbb{N}$, *such that* $f_n(x_n) = x_{n-1}$ *, ∀* $n > 1$ *.*

Explicitation of the operation of closure of subpresheaves:

- Let *J* be a class of sieves on C , J_s its "stabilisation" and \overline{J} the generated topology.
- We know that *J*, *J^s* and *J* define the same "closedness property" of subpresheaves and the same operation of closure $(Q \hookrightarrow P) \mapsto (\overline{Q} \hookrightarrow P)$.

Theorem (O.C., L.L., to appear in [Engendrement]). – *Consider a subpresheaf* $Q \hookrightarrow P$ of a presheaf P on C.

Let $\overline{Q} \hookrightarrow$ *P be its closure with respect to J, J_s or* \overline{J} *.*

Then an element $p \in P(X)$ *belongs to* $\overline{Q}(X)$

if and only if there exists a Js-multicovering of X

$$
\cdots \longrightarrow \mathfrak{X}_n \xrightarrow{f_n} \mathfrak{X}_{n-1} \longrightarrow \cdots \xrightarrow{f_2} \mathfrak{X}_1 \xrightarrow{f_1} \mathfrak{X}_0
$$

 $\cdots \longrightarrow \mathfrak{X}_n \xrightarrow{f_n} \mathfrak{X}_{n-1} \longrightarrow \cdots$
such that, for any $n \in \mathbb{N}$ and $x_n \in X_n$, we have $\sqrt{ }$

- *either* x_n *belongs to the image of* $\mathfrak{X}_{n+1} \xrightarrow{f_{n+1}} \mathfrak{X}_n$
- $\Bigg\}$ • *or the empty sieve on the source of xⁿ is Js-covering,*
	- *or, denoting* $x_{n-1} = f_n(x_n)$, $x_{n-2} = f_{n-1}(x_{n-1})$, \cdots , $x_0 = f_1(x_1)$, *the composite* $x_0 \circ x_1 \circ \cdots \circ x_n : X_n \longrightarrow X$ *verifies the property* $(x_0 \circ x_1 \circ \cdots \circ x_n)^*(p) \in Q(X_n)$ *.*

 $\overline{\mathcal{L}}$

Verification of stability under pull-backs:

- Consider as before *J*, *J^s* and *J*. Consider a subpresheaf $Q \hookrightarrow P$.
- For any object *X*, let $\widetilde{Q}(X) \subset P(X)$ be the subset of elements of *P* which, as in the theorem, can be sent into $Q \hookrightarrow P$ by some J_s -multicovering.
- We first have to check that any morphism $x : X' \to X$ $\mathsf{sends} \quad Q(X) \subseteq P(X) \quad \text{into} \quad Q(X') \subseteq P(X').$
- Given $p \in \widetilde{Q}(X)$ and an adapted J_s -multicovering of X

$$
\cdots \longrightarrow \mathfrak{X}_n \xrightarrow{f_n} \mathfrak{X}_{n-1} \longrightarrow \cdots \xrightarrow{f_2} \mathfrak{X}_1 \xrightarrow{f_1} \mathfrak{X}_0,
$$

it is enough to construct a *Js*-multicovering of *X* ′ as part of a commutative diagram

such that

 $\begin{array}{c} \hline \end{array}$

- $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$ − for any *x* ′ *ⁿ* ∈ X ′ *ⁿ* of image *xⁿ* ∈ X*n*, there is an associated morphism source $(x'_n) \xrightarrow{t_{x'_n}}$ source (x_n)
	- *−* for any x'_n ∈ \mathfrak{X}'_n and its images x_n ∈ \mathfrak{X}_n , x'_{n-1} ∈ \mathfrak{X}'_{n-1} , x_{n-1} ∈ \mathfrak{X}_{n-1} , the square

Verification of the closedness property:

• We have to verify that the subpresheaf

 $\widetilde{O} \longrightarrow P$ is closed. • Consider an element *p* ∈ *P*(*X*) such that there exists a J_s -covering $(X_k \xrightarrow{x_k} X)_{k \in K}$ $\mathsf{verifying} \qquad \mathsf{x}_k^*(p) \in \mathsf{Q}(\mathsf{X}_k)\,,\ \forall\, k \in \mathsf{K}.$

• By definition of Q , each X_k has a J_s -multicovering

$$
\cdots \longrightarrow \mathfrak{X}_{n}^{k} \xrightarrow{f_{n}^{k}} \mathfrak{X}_{n-1}^{k} \longrightarrow \cdots \longrightarrow \mathfrak{X}_{1}^{k} \xrightarrow{f_{1}^{k}} \mathfrak{X}_{0}^{k}
$$

which allows to <u>send</u> $x_k^*(p)$ <u>into</u> $Q \hookrightarrow P$.

• Then the formulas

$$
\mathfrak{X}_0 = \left\{ (X_k \xrightarrow{x_k} X) \mid k \in K \right\}
$$

and

$$
\mathfrak{X}_n = \coprod_{k \in K} \mathfrak{X}_{n-1}^k \quad \text{for} \quad n \ge 1
$$

define a *Js*-multicovering of *X* which sends $p \in P(X)$ into $Q \hookrightarrow P$.

• This means that $p \in Q(X)$.

Verification of minimality:

- Consider a subpresheaf $Q' \hookrightarrow P$ which is closed with respect to *J*, J_s or \overline{J} and which contains $Q \hookrightarrow P$. We have to check that Q' contains $Q \hookrightarrow P$.
- Consider an element $p \in Q(X)$ and a J_s -multicovering of X $\cdots \longrightarrow \mathfrak{X}_n \stackrel{f_n}{\longrightarrow} \mathfrak{X}_{n-1} \longrightarrow \cdots \longrightarrow \mathfrak{X}_1 \stackrel{f_1}{\longrightarrow} \mathfrak{X}_0$ which sends *p* into *Q*.
- For any $n \geq 0$, let $\mathfrak{X}'_n \subseteq \mathfrak{X}_n$ be the <u>subset of elements</u> x_n whose associated branch x_n , $f_n(x_n) = x_{n-1}$, \dots , $f_1(x_1) = x_0$ $verifies (x_0 \circ x_1 \circ \cdots \circ x_n)^*(p) \notin Q'(X).$
- We have to prove that all \mathfrak{X}'_n , $n \geq 0$, are <u>empty</u>.
- If they were not all empty, there would exist

$$
n \ge 0 \quad \text{and} \quad x_n \in \mathfrak{X}_n \quad \text{such that} \quad \{x_{n+1} \in \mathfrak{X}'_{n+1} \mid f_{n+1}(x_{n+1}) = x_n\} = \emptyset.
$$

This would yield a contradiction as

$$
\begin{cases}\n- & \underline{\text{either }} \{x_{n+1} \in \mathfrak{X}_{n+1} \mid f_{n+1}(x_{n+1}) = x_n\} \text{ is } J_s\text{-covering}, \\
- & \underline{\text{or }} (x_0 \circ x_1 \circ \cdots \circ x_n)^*(p) \in Q(X).\n\end{cases}
$$

An explicit formula for generated topologies:

• Let *J* be a class of sieves $C \hookrightarrow \gamma(X)$ on C, J_s be its "stabilisation" and \overline{J} their generated topology.

Corollary. – *A sieve on an object X*

$$
C \longrightarrow y(X)
$$

belongs to the generated topology J if and only if there exists a Js-multicovering of X

$$
\cdots \longrightarrow \mathfrak{X}_n \xrightarrow{f_n} \mathfrak{X}_{n-1} \longrightarrow \cdots \longrightarrow \mathfrak{X}_1 \xrightarrow{f_1} \mathfrak{X}_0
$$

such that, for any n \in N *and x_n* \in \mathfrak{X}_n *, we have*

- $\sqrt{ }$ $\overline{}$ • *either* x_n *belongs to the image of* $\mathfrak{X}_{n+1} \xrightarrow{f_{n+1}} \mathfrak{X}_n$
	- *or the empty sieve on the source of xⁿ is Js-covering,*
	- *or, denoting*

 $\overline{}$

$$
f_n(x_n) = x_{n-1}, \cdots, f_1(x_1) = x_0,
$$

the composite

$$
x_0\circ x_1\circ\cdots\circ x_n:X_n\longrightarrow X
$$

is an element of C.

Topological interpretations of geometric axioms:

- Consider a geometric first-order theory $\mathbb T$ in a vocabulary (or "signature") Σ consisting in
	- $\sqrt{ }$ − object names (or "sorts") *Aⁱ* ,
	- $\frac{1}{2}$
	- \mathcal{L} $-$ morphism names (or "function symbols") $f : A_1 \cdots A_n \rightarrow A,$
 $-$ subobject names (or "relation symbols") $R \rightarrow A_1 \cdots A_n.$

Reminder. – *For any model M of such a geometric theory* $\mathbb T$ *in a topos* \mathcal{E} *, corresponding to a topos morphism* \mathcal{E} *^{<i>m*}→ $\mathcal{E}_\mathbb{T}$, we have:

 (i) *Any sort A_i* interprets as an object MA_i of $\mathcal{E}.$

(ii) *Any geometric formula* $\varphi(x_1^{A_1} \cdots x_n^{A_n})$ *of* Σ *interprets as a subobject* $M\varphi(x_1^{A_1}\cdots x_n^{A_n}) \longrightarrow MA_1 \times \cdots \times MA_n.$

(iii) *Any implication (or "sequent")* $\varphi(x_1^{A_1}, \dots, x_n^{A_n}) \vdash \psi(x_1^{A_1}, \dots, x_n^{A_n})$ *interprets* as an embedding of subobjects of $MA_1 \times \cdots \times MA_n$ $M(\varphi \wedge \psi)(x_1^{A_1} \cdots x_n^{A_n}) \longrightarrow M\varphi(x_1^{A_1} \cdots x_n^{A_n})$ *which is an epimorphism (and so an isomorphism) if and only if M verifies* $\varphi \vdash \psi$ *.*

Reduction from general geometric formulas to Horn formulas:

Definition. –

Let Σ *be a first-order vocabulary (or "signature").*

(i) A geometric formula $\varphi(\vec{x})$ of Σ is called "atomic" *if it is deduced from relation or equality formulas* $R(x_1^{A_1}, \cdots, x_n^{A_n})$ or $x_1^A = x_2^A$ *by replacing finitely many times variables by morphism formulas* $x^A = f(x_1^{B_1}, \dots, x_m^{B_m})$ for $f : B_1 \dots B_m \to A$ in Σ . **(ii)** *A geometric formula* $\varphi(\vec{x})$ *of* Σ *is called Horn if it is a finite conjunction of atomic formulas* $\varphi_i(\vec{x})$ $\varphi(\vec{x}) = \varphi_1(\vec{x}) \wedge \cdots \wedge \varphi_k(\vec{x}).$

Lemma. –

Any geometric formula φ(⃗*x*) *can be written in equivalent form*

$$
\varphi(\vec{x}) = \bigvee_{i \in I} \exists (\vec{x}_i) \varphi_i(\vec{x}_i, \vec{x})
$$

where each $\varphi_i(\vec{x}_i, \vec{x})$ *is a Horn formula.*

Reduction to topological interpretations of Horn formulas:

Corollary. –

Let T *be a geometric first-order theory in a vocabulary* Σ*. Then it is possible to associate to any geometric sequent of* Σ $\varphi(\vec{x}) \vdash \psi(\vec{x})$

a double family X⃗*x*,φ,ψ *consisting in*

\n- \n
$$
\begin{cases}\n \bullet & \text{ a family of Horn formulas} \\
 \varphi_i(\vec{x}_i), & i \in I, \\
 \bullet & \text{ for each index } i, \text{ a family of Horn formulas} \\
 \varphi_{i,j}(\vec{x}_i, \vec{x}_{i,j}), & j \in I_i,\n \end{cases}
$$
\n
\n

such that, for any model M of $\mathbb T$ *in a topos* $\mathcal E$ *, the implication* $\varphi(\vec{x}) \vdash \psi(\vec{x})$ *is verified by M if and only if*

$$
\begin{cases} \bullet & \text{for any index } i \in I, \text{ the family of projections in } \mathcal{E} \\ & \overline{M(\varphi_{i,j}(\vec{x}_i, \vec{x}_{i,j}) \wedge \varphi_i(\vec{x}_i)) \longrightarrow M \varphi_i(\vec{x}_i)} \\ & \text{is globally epimorphic.} \end{cases}
$$

Concrete reduction of geometric axioms to topology generation:

Proposition. – *Let* T *be a geometric first-order theory in a vocabulary* Σ*. Suppose that the classifying topos* $\mathcal{E}_{\mathbb{T}}$ *of* \mathbb{T} *is presented as*

 $\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}$, through $\ell : \mathcal{C} \to \mathcal{E}_{\mathbb{T}}$

where

- $\sqrt{ }$ • C *has arbitrary finite limits, i.e. finite products and fiber products,*
	- *any "sort" A of* Σ *interprets as an object UA of* C*,*
- \int *any "function symbol" f* : $A_1 \cdots A_n \rightarrow A$ *of* Σ *interprets as a morphism of* C *Uf* : $UA_1 \times \cdots \times UA_n \rightarrow UA$,
- $\overline{\mathcal{L}}$ any "relation symbol" $R \rightarrowtail A_1 \cdots A_n$ of Σ interprets *as a subobject of* \mathcal{C} *UR* \longrightarrow *UA*₁ \times $\cdots \times$ *UA*_n*,*

so that any Horn formula φ(*x A*1 1 · · · *x An ⁿ*) *of* Σ *interprets as a subobject of* C $U\varphi \hookrightarrow UA_1 \times \cdots \times \overline{UA_n}$.

Then a geometric sequent $\varphi(\vec{x}) \vdash \psi(\vec{x})$ *of* Σ *is provable*

in a quotient theory T ′ *of* T *corresponding to a topology J* ′ ⊇ *J if and only if the associate families of projection morphisms*

$$
(U(\varphi_{i,j}(\vec{x}_i, \vec{x}_{i,j}) \land \varphi_i(\vec{x}_i)) \longrightarrow U\varphi_i(\vec{x}_i))_{j \in I_i}, i \in I,
$$

defined by the double family of Horn formulas $\mathfrak{X}_{\vec{x}, \varphi, \psi}$

are J ′ *-coverings.*

The problem of presentations of classifying toposes:

Problem. – *Given a geometric first-order theory* T *in a vocabulary* Σ*, how to present its classifying topos in terms of a site* (C, J)

$$
\mathcal{E}_{\mathbb{T}}\cong\widehat{\mathcal{C}}_{J}
$$

such that

- C *has arbitrary finite limits,*
	- *elements of the vocabulary* Σ *interpret in* C*.*

Hints:

• One may take $\int \mathcal{C} = \mathcal{C}_{\mathbb{T}}$ (syntactic category of \mathbb{T}), $J = J_{\mathbb{T}}$ (syntactic topology on $\mathcal{C}_{\mathbb{T}}$). • More generally, one may write \mathbb{T} = quotient of a theory \mathbb{T}_0 in the same vocabulary Σ, and take $\sqrt{ }$ $\frac{1}{2}$ \mathcal{L} $\mathcal{C}=\overline{\mathcal{C}_{\mathbb{T}_0}}$ (syntactic category of \mathbb{T}_0), $J=$ topology on ${\cal C}_{\mathbb T_0}$ generated by $J_{\mathbb T_0}$ and the covering families associated with the axioms of T. • Even more generally, one can first replace $\mathbb T$ by $T' =$ geometric first-order theory in a vocabulary Σ' which is "syntactically equivalent" in the sense that $C_{\mathbb{T}} \cong C_{\mathbb{T}'}$. **L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 60 / 90**

The case of presheaf type theories:

Definition. – *A geometric first-order theory* T *in a vocabulary* Σ *is called "presheaf type" if its classifying topos is a topos of presheaves* $\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}$ *on some category* \mathcal{C} *.*

Examples:

- Any theory $\mathbb T$ consisting in a vocabulary Σ without axioms is presheaf type.
- More generally, any "cartesian theory" is presheaf type.
- In particular, any "algebraic" or "Horn" theory is presheaf type.

Theorem (O.C., see [TST]). – *For any presheaf type theory* T*, one has*

$$
\mathcal{E}_\mathbb{T}\cong \widehat{\mathcal{C}}
$$

 $\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}} \ \text{for} \qquad \mathcal{C} = \mathcal{C}^{\text{ir}}_{\mathbb{T}} \cong (\mathbb{T}\text{-mod (Set)})^{\text{op}}_{\text{ft}} \quad \textit{where}$

- \bullet $\ \mathcal{C}^\mathrm{ir}_\mathbb{T}$ is the full subcategory of $\mathcal{C}_\mathbb{T}$ *on objects which are "irreducible" in the sense that their only J_T-covering sieve is the maximal sieve.*
- \mathbb{T} -mod $(\mathsf{Set})_{\text{fn}}$ *is the full subcategory of* \mathbb{T} -mod (Set) *on set-valued models of* T *which are "finitely presentable" by geometric formulas.*

The case of cartesian theories:

Theorem. –

If T *is a "cartesian" theory, it is presheaf type and one can write*

$$
\mathcal{E}_\mathbb{T}\cong \widehat{\mathcal{C}}
$$

with $\mathcal{C} = \mathcal{C}_{\mathbb{T}}^{\text{ir}} = \mathcal{C}_{\mathbb{T}}^{\text{cart}}$

where $\mathcal{C}_{\mathbb{T}}^{\text{cart}}$ is the "syntactic cartesian theory" of \mathbb{T} consisting in

• *objects which are "cartesian formulas" in the vocabulary* Σ *of* T*, meaning formulas of the form* $(\exists \vec{y}) \varphi(\vec{x}, \vec{y})$

where $\varphi(\vec{x}, \vec{y})$ *is a Horn formula and the sequent*

$$
\phi(\vec{x}, \vec{y}) \wedge \phi(\vec{x}, \vec{y}') \vdash \vec{y} = \vec{y}' \qquad \text{is provable in } \mathbb{T},
$$

• *morphisms which are "cartesian formulas"* θ(⃗*x*, ⃗*y*)

$$
\varphi(\vec{x}) \xrightarrow{\theta(\vec{x}, \vec{y})} \psi(\vec{y})
$$

which are T*-provably functional.*

Reduction to theories without function symbols:

Lemma. – *For any geometric first-order theory* T *in a vocabulary* Σ*, there is a syntactically equivalent geometric theory* T ′ *whose vocabulary* Σ ′ *does not contain function symbols.*

Remark: The meaning of "syntactically equivalent" is that the syntactic categories $\mathcal{C}_{\mathbb{T}}$ and $\mathcal{C}_{\mathbb{T}'}$ of \mathbb{T} and \mathbb{T}' are equivalent:

$$
\mathcal{C}_{\mathbb{T}}\cong \mathcal{C}_{\mathbb{T}'},
$$

implying

$$
\mathcal{E}_{\mathbb{T}}\cong\mathcal{E}_{\mathbb{T}'}.
$$

Proof:

• Replace each function symbol $f : A_1 \cdots A_n \rightarrow A$ of Σ by a <u>relation symbol</u> $R_f \hookrightarrow A_1 \cdots A_n$ A completed by the <u>axioms</u> $\int R_f(x_1^{A_1}, \cdots, x_n^{A_n}, y^A) \wedge R_f(x_1^{A_1}, \cdots, x_n^{A_n}, z^A) \vdash y^A = z^A,$ $\top \vdash_{x_1^{A_1}, \cdots, x_n^{A_n}} (\exists y^A) R_f(x_1^{A_1}, \cdots, x_n^{A_n}, y^A).$ • Then replacing each substitution of variables $y^A = f(x_1^{A_1}, \dots, x_n^{A_n})$ by $R_f(x_1^{A_1}, \dots, x_n^{A_n}, y^A)$ and each <u>relation</u> $R_f(x_1^{A_1}, \cdots, x_n^{A_n}, y^A)$ by the <u>equality</u> $f(x_1^{A_1}, \cdots, x_n^{A_n}) = y^A$ defines an equivalence of categories $C_{\mathbb{T}} \cong C_{\mathbb{T}'}$.

The case of theories without function symbols and without axioms:

In that case, the cartesian syntactic category and the classifying topos can be described fully explicitly:

Proposition. – *Let* Σ *be a vocabulary without function symbols. Then one can write* $\varepsilon_z \approx \widehat{C}$ $where \ \mathcal{C} = \mathcal{C}_{\Sigma}^{\text{cart}}$ *is the syntactic cartesian category of* Σ *explicited as follows:* **(1)** *The objects of* $C = C_{\Sigma}^{\text{cart}}$ *are finite conjunctions* $\varphi(x_1^{A_1}, \cdots, x_n^{A_n}) = \bigwedge_{A_1 \in \mathcal{A}} \varphi_k(x_1^{A_1}, \cdots, x_n^{A_n})$ 1≤*k*≤ℓ *of <u>atomic formulas</u>* $\varphi_k(x_1^{A_1}, \dots, x_n^{A_n})$ $R(x_{i_1}^{A_{i_1}}, \cdots, x_{i_m}^{A_{i_m}})$ $x_{i_1}^{A_{i_1}} = x_{i_2}^{A_{i_2}} = \cdots = x_{i_m}^{A_{i_m}}$ $x_1^{A_1}, \cdots, x_n^{A_n}$. **(2)** *The morphisms of* $C = C_{\Sigma}^{\text{cart}}$ $\varphi(x_1^{A_1}, \cdots, x_n^{A_n}) \longrightarrow \psi(x_{\alpha_1}^{A_{\alpha_1}}, \cdots, x_{\alpha_n'}^{A_{\alpha_n}})$ *are projections associated with injective maps* $\alpha : \{1, \dots, n'\} \hookrightarrow \{1, \dots, n\}$
is components of the integrate *which transform all atomic components of* ψ *into atomic components of* φ*.*

L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 64 / 90

IV. Geometric operations on subtoposes

- **Unions, intersections and differences of subtoposes**
	- **-** Topological expressions.
	- **-** Logical expressions.
- **Existential push-forward and pull-back of subtoposes**
	- **-** Logical expression of push-forward.
	- **-** Semantic expression of pull-back.
	- **-** Topological expression of push-forward and pull-back.
	- **-** Actions of correspondences and their topological expression.

• **Compatibility of pull-backs with unions of subtoposes**

- **-** The case of locally connected morphisms and its consequences.
- **-** Fibrations, Giraud topologies and locally connected morphisms.
- **-** Factorizations of topos morphisms through locally connected morphisms.
- **-** Galois correspondences associated with essential morphisms of toposes.
- **-** Characterization of pull-backs under essential morphisms.
- **-** Characterization of pull-backs under locally connected morphisms.

Unions, intersections and differences of toposes:

Proposition. $-$ *Let* $\mathcal E$ *be a topos.* **(i)** Any family of subtoposes $(\mathcal{E}_i \hookrightarrow \mathcal{E})_{i \in I}$ *Any family of subtoposes* $(\mathcal{E}_i \hookrightarrow \mathcal{E})_{i \in I}$
has a <u>union $\bigvee_{i \in I} \mathcal{E}_i \hookrightarrow \mathcal{E}$ *</u> and an <u>intersection</u>* $\bigwedge_{i \in I} \mathcal{E}_i \hookrightarrow \mathcal{E}$ $\frac{1}{\mathcal{C}}$ *i*∈*I*
i i characterized by the properties that, for any subtopos $\mathcal{E}' \hookrightarrow \mathcal{E}$,
 $\sqrt{\mathcal{E}_i \subseteq \mathcal{E}' \Leftrightarrow \mathcal{E}_i \subseteq \mathcal{E}'}, \quad \forall i \in I,$ $\mathcal{E}' \subseteq \bigwedge_{i \in I} \mathcal{E}_i \Leftrightarrow \mathcal{E}' \subseteq \mathcal{E}_i, \quad \forall \, i \in I.$ $\mathcal{E}_i \subseteq \mathcal{E}' \Leftrightarrow \mathcal{E}_i \subseteq \mathcal{E}'$, $\forall i \in I$, *i*∈*I* **(ii)** For any subtoposes $\mathcal{E}_1, \mathcal{E}_2$ of \mathcal{E}_1 , there exists a subtopos $\mathcal{E}_1 \backslash \overline{\mathcal{E}_2} \hookrightarrow \mathcal{E}$ characterized by the property that, for any $\overline{\mathcal{E}}' \hookrightarrow \mathcal{E}$, $\mathcal{E}_1 \backslash \mathcal{E}_2 \subseteq \mathcal{E}' \stackrel{\frown}{\Leftrightarrow} \mathcal{E}_1 \subseteq \mathcal{E}_2 \vee \mathcal{E}'.$

Remark: (ii) means that the <u>functor</u> $\mathcal{E}' \mapsto \mathcal{E}_2 \vee \mathcal{E}'$ has a left-adjoint $\mathcal{E}_1 \mapsto \mathcal{E}_1 \backslash \mathcal{E}_2$.

Corollary. –

(i) The functor $\mathcal{E}' \mapsto \mathcal{E}_2 \vee \mathcal{E}'$ respects arbitrary intersections.

(ii) *As a formal consequence, intersection functors* $\mathcal{E}' \mapsto \mathcal{E}_1 \wedge \mathcal{E}'$ respect finite unions of subtoposes.

L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 66 / 90

Topological expressions of unions, intersections and differences of subtoposes:

Proposition. – Let $\mathcal{E} = \widehat{C}_J$ be the topos of sheaves on a site (C, J) .

(i) For a family of subtoposes $\mathcal{E}_i = \mathcal{C}_{J_i} \hookrightarrow \mathcal{C}_J = \mathcal{E}$ defined by topologies J_i , $i \in I$, their intersection Λ , s their <u>union</u> $\setminus \mathcal{E}_i$ is defined by the topology $\bigwedge J_i$ and their <u>intersection</u> $\bigwedge \mathcal{E}_i$ *i*∈*I i*∈*I is defined by the topology* W *Jⁱ generated by the topologies Jⁱ , i* ∈ *I. i*∈*I i*∈*I*

(ii) For subtoposes $\mathcal{E}_1 = \widehat{\mathcal{C}}_J$ and $\mathcal{E}_2 = \widehat{\mathcal{C}}_J$ defined by topologies J_1, J_2 , *their difference* $\mathcal{E}_1 \backslash \mathcal{E}_2$ *is defined by the topology* $\overline{J_0 = (J_2 \Rightarrow J_1)}$ *for which a sieve C on an object X is covering if and only if*

\n- for any morphism
$$
X' \xrightarrow{X} X
$$
 of C ,
\n- the maximal sieve is the only sieve on X' which
\n

 − *contains x* [∗]*C,*

− *is J*1*-closed and J*2*-covering.*

Reminder: A $\underline{\text{sieve}}$ C on an object X is covering for \bigvee J *i*∈*I* if and only if the maximal sieve is the only sieve on *X* which

 $\sqrt{ }$ − contains *C*,

$$
- is J_i\text{-closed for any } i \in I.
$$

Logical expressions of unions and intersections of subtoposes:

Proposition. – *Let* $\mathcal{E} = \mathcal{E}_{\mathbb{T}}$ *be the classifying topos of a geometric first-order theory* \mathbb{T} *.* Let $\mathcal{E}_i = \mathcal{E}_{\mathbb{T}_i} \hookrightarrow \mathcal{E}_{\mathbb{T}} = \mathcal{E}$, $i \in I$, be a family of subtoposes of \mathcal{E}
which eleccify quotient theories \mathbb{T} of \mathbb{T} . Then: *which classify quotient theories* \mathbb{T}_i *of* \mathbb{T}_i *. Then:* $\displaystyle \bigwedge_{i \in I} \mathcal{E}_i \longrightarrow \mathcal{E}$ $\displaystyle \bigwedge_{i \in I} \mathcal{E}_i \longrightarrow \mathcal{E}$ *i*∈*I classifies the quotient theory* W T*ⁱ of* T *i*∈*I defined by the join of the families of axioms of all* T*ⁱ 's.* $\displaystyle \bigcup_{i \in I} \mathcal{E}_i \longrightarrow \mathcal{E}$
i $\displaystyle \bigcup_{i \in I} \mathcal{E}_i \longrightarrow \mathcal{E}$ *i*∈*I classifies any quotient theory* T ′ *of* T *such that a geometric sequent* φ ⊢ ψ *in the vocabulary of* T *is provable* \overline{i} *n* \mathbb{T}' *if and only if it is provable in each* \mathbb{T}_i , $i \in I$. **Remark:** In practice, <u>unions</u> $\bigvee \mathcal{E}_{\mathbb{T}_i}$ can be computed if $\mathcal{E}_{\mathbb{T}}$ and its subtoposes $\mathcal{E}_{\mathbb{T}_f} \hookrightarrow \mathcal{E}_{\mathbb{T}}$ can be presented as $\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}_J$ and $\mathcal{E}_{\mathbb{T}_i} \cong \widehat{\mathcal{C}}_{J_i}$, $i \in I$, for some explicit topologies $J_i, \, i \in I,$ on a small category $\mathcal{C}.$ **L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 68 / 90**

Logical expressions of differences of subtoposes:

Proposition (O.C., see chapter 4 of [TST]). – *Let* $\mathcal{E} = \mathcal{E}_{\mathbb{T}}$ *be the classifying topos of a geometric first-order theory* \mathbb{T} *.* Let $\mathcal{E}_1 = \mathcal{E}_{\mathbb{T}_1} \hookrightarrow \mathcal{E}_{\mathbb{T}} = \mathcal{E}$ and $\mathcal{E}_2 = \mathcal{E}_{\mathbb{T}_2} \hookrightarrow \mathcal{E}_{\mathbb{T}} = \mathcal{E}$
be the close if *ying* tensore of quationt theories *be the classifying toposes of quotient theories* \mathbb{T}_1 , \mathbb{T}_2 *of* \mathbb{T} *. Then the difference subtopos* $\mathcal{E}_1 \backslash \mathcal{E}_2 \longrightarrow \mathcal{E}$ *classifies the quotient theory of* \mathbb{T} $\mathbb{T}' = (\mathbb{T}_2 \Rightarrow \mathbb{T}_1)$ *defined from* T *by adding as axioms the geometric implications* $\psi(\vec{y}) \vdash \psi'(\vec{y})$ *such that:*

- the reverse implication $\psi'(\vec{y}) \vdash \psi(\vec{y})$ is provable in \mathbb{T} ,
- *for any geometric formula* $\varphi(\vec{x})$ *in the vocabulary of* \mathbb{T} *, for any* T*-provably functional geometric formula* $\theta(\vec{x}, \vec{v}) : \varphi(\vec{x}) \longrightarrow \psi(\vec{v})$ *and for any geometric formula* $\chi(\vec{x})$ *verifying the conditions* $\sqrt{ }$ $\frac{1}{2}$ \mathcal{L} $-\chi(\vec{x}) \vdash \varphi(\vec{x})$ *is* \mathbb{T} *-provable,* − φ(⃗*x*) ⊢ χ(⃗*x*) *is* T2*-provable,* − (∃ ⃗*y*)(θ(⃗*x*, ⃗*y*) ∧ ψ′ (⃗*y*)) ⊢ χ(⃗*x*) *is* T*-provable, then* $\varphi(\vec{x}) \vdash \psi(\vec{x})$ *is* \mathbb{T}_1 *-provable.* **L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 69 / 90**

Proof of the logical expressions of differences of subtoposes:

The proof is based on the following theorem:

Theorem. – *Let* T *be a geometric first-order theory.*

(i) *The classifying topos* \mathcal{E}_T *of* \mathbb{T} *can be constructed as the topos of sheaves*

$$
\mathcal{E}_{\mathbb{T}} = \widehat{(\mathcal{C}_{\mathbb{T}})}_{J_{\mathbb{T}}}
$$

on the geometric syntactic category $C_{\mathbb{T}}$ *of* \mathbb{T} *endowed with the syntactic topology* $J_{\mathbb{T}}$ *.*

- **(ii)** *The canonical functor* $\ell : \mathcal{C}_{\mathbb{T}} \to \mathcal{E}_{\mathbb{T}}$ *is fully faithful.*
- **(iii)** For any object of $C_{\mathbb{T}}$, i.e. any geometric formula $\varphi(\vec{x})$, *the subobjects of* $\ell(\varphi(\vec{x}))$ *in* $\mathcal{E}_{\mathbb{T}}$ *correspond to subobjects of* $\varphi(\vec{x})$ *in* $\mathcal{C}_{\mathbb{T}}$ *,*

i.e. to formulas $\chi(\vec{x})$ *such that* $\chi(\vec{x}) \vdash \varphi(\vec{x})$ *is* T-provable.

(iv) *In particular, any sieve on an object* $\varphi(\vec{x})$ *of* $C_{\mathbb{T}}$ *has an image which is a geometric formula* $\chi(\vec{x})$ *such that* $\chi(\vec{x}) \vdash \varphi(\vec{x})$ *is* \mathbb{T} *-provable.*

Sketch of the proof of the logical expression of a difference: Subtoposes $\mathcal{E}_{\mathbb{T}_1}$ and $\mathcal{E}_{\mathbb{T}_2}$ of $\mathcal{E}_{\mathbb{T}}$ are defined by topologies *J*₁ ⊃ *J*_π and *J*₂ \sup *J*_π on C_{T} such that, for any sieve on an object $\varphi(\vec{x})$ of $\mathcal{C}_{\mathbb{T}}$, it is covering for J_1 [resp. J_2] if and only if its image $\chi(\vec{x})$ verifies the condition that $\varphi(\vec{x}) \vdash \chi(\vec{x})$ is provable in \mathbb{T}_1 [resp. \mathbb{T}_2].

L. Lafforgue [Geometry and logic of subtoposes](#page-0-0) September 3-6, 2024 70 / 90

The logical expression of existential push-forward of subtoposes:

Consider a morphism of toposes $\mathcal{E}' \stackrel{e}{\longrightarrow} \mathcal{E}$ presented in the form $\mathcal{E}' = \mathcal{C}_J \longrightarrow \mathcal{E}_T = \mathcal{E}$ which corresponds to a <u>model</u> *M*
of a geometric first exder theory \mathbb{T} in the topes of abovise an a site (\mathcal{C}, I) of a geometric first-order theory $\mathbb T$ in the topos of sheaves on a site $(\mathcal C, J)$.

Proposition. – *For any subtopos* $\mathcal{E}_1' \hookrightarrow \mathcal{E}'$ corresponding to a topology $J_1 \supseteq J_2$ *and a <u>sheafification functor</u>* j^* : $\mathcal{E}' = \hat{\mathcal{C}}_J \longrightarrow \hat{\mathcal{C}}_{J_1} = \mathcal{E}'_1$, *let* \mathbb{T}_1 *be a quotient theory of* \mathbb{T} *such that any geometric implication in the vocabulary of* T $\varphi(\vec{x}) \vdash \psi(\vec{x})$ *is* \mathbb{T}_1 -provable if an only if j[∗] transforms the embedding of $\widehat{\mathcal{C}}_J$ $M(\omega \wedge \psi) \longrightarrow M\omega$ *into an isomorphism of* C_{J_1} . *Then* \mathbb{T}_1 *defines the smallest subtopos* $\overline{e_*(\mathcal{E}_1')=\mathcal{E}_{\mathbb{T}_1}} \hookrightarrow \mathcal{E}_{\mathbb{T}}$ *such that the composite morphism* $\mathcal{E}_1' \hookrightarrow \mathcal{E}' \xrightarrow{e} \mathcal{E} = \mathcal{E}_{\mathbb{T}}$ $\frac{\text{factorizes through}}{\text{ifomorphism}}$ $e_*(\mathcal{E}'_1) \longrightarrow \mathcal{E} = \mathcal{E}_{\mathbb{T}}.$

A semantic expression of pull-back of subtoposes:

We still consider a morphism of toposes $\widehat{C}_J = \mathcal{E}' \stackrel{e}{\longrightarrow} \mathcal{E} = \mathcal{E}_{\mathbb{T}}$ which corresponds to a model M of $\mathbb T$ in $\widehat{\mathcal{C}}_J$.

Proposition. – *For any subtopos* $\mathcal{E}_1 \hookrightarrow \mathcal{E} = \mathcal{E}_{\mathbb{T}}$ *corresponding to a quotient theory* \mathbb{T}_1 *of* \mathbb{T} *defined by a list of extra axioms*

 $\varphi_i \vdash \psi_i, \quad i \in I$,

*consider the topology J*¹ *on* C

which is generated by J and the stable family of sieves M (φ*i* ∧ψ*i*) ×_{*M*φ*i*} y (*X*)

associated with

$$
\int \bullet \quad \text{the extra axioms } \varphi_i \vdash \psi_i, \, i \in I,
$$

- $\frac{1}{2}$ *objects* X *of* C *embedded via* $y : C \hookrightarrow \widehat{C}$ *,*
- \mathcal{L} • *elements of* $M\varphi_i(X)$ *interpreted as morphisms* $y(X) \to M\varphi_i$ *in C.*

*Then the topology J*¹ *on* C *defines a subtopos*

$$
e^{-1}\mathcal{E}_1 = \widehat{\mathcal{C}}_{J_1} \longrightarrow \widehat{\mathcal{C}}_J = \mathcal{E}'
$$

 $e^{-1}\mathcal{E}_1 = \hat{\mathcal{C}}_{J_1}$
such that, for <u>any subtopos</u> $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$ *,*

$$
e^{-1}\mathcal{E}_1\supseteq \mathcal{E}_1'\Leftrightarrow \mathcal{E}_1\supseteq e_*\mathcal{E}_1'.
$$
A topological expression of push-forward of subtoposes:

Consider a morphism of toposes $\mathcal{E}' \xrightarrow{e} \mathcal{E}$
presented in the form $\mathcal{E}' \xrightarrow{S} \widehat{\mathcal{E}}$ presented in the form $\mathcal{E}' \longrightarrow \mathcal{E} = \mathcal{C}$ *J*

which corresponds to a functor $\rho : \mathcal{C} \xrightarrow{\ell} \widehat{\mathcal{C}}_J \xrightarrow{e^*} \mathcal{E}'$
which is "flot" and " *L*eontinuous" which is "flat" and "*J*-continuous".

Proposition. –

For any subtopos $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$
and the associated functor *and the <u>associated functor</u>* $j^* : \mathcal{E}' \to \mathcal{E}'_1$, *let J*¹ ⊇ *J be the topology on* C *for which a sieve C on an object X of* C *is covering if and only if its transform by*

$$
\circ \rho: C \xrightarrow{\ell} \widehat{C}_J \xrightarrow{e^} \mathcal{E}' \xrightarrow{j^*} \mathcal{E}'_1
$$
fornik of morphisms

j $j^* \circ \rho : \mathcal{C} \stackrel{\ell}{\longrightarrow} \widehat{\mathcal{C}}_J \stackrel{e^*}{\longrightarrow} \mathcal{E}$
is a globally epimorphic family of morphisms.

*Then the subtopos defined by J*¹

$$
\widehat{\mathcal{C}}_{J_1} \longleftrightarrow \widehat{\mathcal{C}}_J = \mathcal{E}
$$

is the <u>push-forward</u> of $\mathcal{E}_1' \hookrightarrow \mathcal{E}'$ by $\boldsymbol{e} : \mathcal{E}' \to \mathcal{E}$

$$
e_*(\mathcal{E}'_1) \hookrightarrow \mathcal{E}.
$$

A topological expression of push-forward of subtoposes:

We still consider a morphism of toposes $\mathcal{E}' \overset{e}{\longrightarrow} \mathcal{E} = \widehat{\mathcal{C}}_J$ corresponding to a <u>functor</u> $\rho : \mathcal{C} \xrightarrow{\ell} \widehat{\mathcal{C}}_J \xrightarrow{e^*} \mathcal{E}'$ and its unique colimit preserving extension $\widehat{\rho}: \mathcal{C} \to \mathcal{E}'.$ As ρ is "flat", $\hat{\rho}$ respects finite limits.

Proposition. – *For any subtopos* $\mathcal{E}_1 \hookrightarrow \mathcal{E} = \widehat{\mathcal{C}}_J$ *defined by a topology* $J_1 \supset J$ *on* C , *its pull-back by the morphism e* : *£'* → *£* $e^{-1}\mathcal{E}_1 \hookrightarrow \mathcal{E}'$ *is defined by the topology on* \mathcal{E}' *generated by the monomorphisms* $\widehat{\rho}(C) \hookrightarrow \widehat{\rho}\circ y(X) = e^* \circ \ell(X) = \rho(X)$ *obtained as the transformations by* $\hat{\rho}$ *of any family of sieves on* C $(C$ → $v(X)$ *which generates the topology* J_1 *on* C *from* J *.*

Correspondences and their actions on subtoposes:

Definition. –

(i) *A correspondence between a pair of toposes* E *and* E ′ *is a pair of topos morphisms from a third topos* E_{Γ}

$$
\mathcal{E}' \xleftarrow{p} \mathcal{E}_{\Gamma} \xrightarrow{q} \mathcal{E}.
$$

(ii) *Such a correspondence is called "embedded" if the associated morphism*

$$
\mathcal{E}_{\Gamma} \longrightarrow \mathcal{E}' \times \mathcal{E}
$$

is an embedding.

Definition. – The <u>action</u> of a correspondence $\mathcal{E}' \xleftarrow{p} \mathcal{E}_{\Gamma} \xrightarrow{q} \mathcal{E}$ *on subtoposes is the map*

 $q_* \circ p^{-1} :$ {*subtoposes of* \mathcal{E}' } \longrightarrow {*subtoposes of* \mathcal{E} }.

Remark: Any correspondence $\mathcal{E}' \stackrel{p}{\longleftarrow} \mathcal{E}_{\Gamma} \stackrel{q}{\longrightarrow} \mathcal{E}$ <u>defines</u> an embedded correspondence $\mathcal{E}_{\overline{\Gamma}}$ as the image of

 $\overline{\mathcal{E}_{\Gamma} \longrightarrow \mathcal{E}' \times \mathcal{E}}$. But the actions on subtoposes of \mathcal{E}_{Γ} and $\mathcal{E}_{\overline{\Gamma}}$ are <u>not the same</u> in general, even if $p = id$ and $\mathcal{E}' = \mathcal{E}'_{\Gamma}$ $\frac{q}{q}$ \rightarrow *E* is a morphism.

A topological expression of the action of embedded correspondences:

Consider a <u>pair of toposes</u> of <u>sheaves</u> $\mathcal{E}' = \mathcal{D}_K$ and $\mathcal{E} = \mathcal{C}_J$. Their product can be presented as $\mathcal{E}' \times \mathcal{E} = (\widehat{\mathcal{D} \times \mathcal{C}})_{K \times J}$ if $K \times J$ denotes the topology on $\mathcal{D} \times \mathcal{C}$ generated by K and $J.$

Proposition. –

Consider an embedded correspondence $\mathcal{E}_{\Gamma} \hookrightarrow \mathcal{E}' \times \mathcal{E} = (\widehat{\mathcal{D} \times \mathcal{C}})_{K \times J}$ *corresponding to a topology* Γ *on* D × C *which contains K and J. Then, for any subtopos*

 $\mathcal{E}_1' \longrightarrow \mathcal{E}'$ *corresponding to a topology K*₁ \supseteq *K* on D, *its transform by the correspondence* E_Γ *is the subtopos* $\mathcal{E}_1 \longrightarrow \mathcal{E}$

*defined by the topology J*¹ ⊇ *J on* C *for which a sieve*

C on an object X of C

is covering if and only if, for any object Y of D*,*

C considered as a sieve on the object (Y, X) of $D \times C$

is covering for the topology generated by Γ *and K*1*.*

The theorem on compatibility of pull-backs and unions of subtoposes:

For any topos morphism $e:\mathcal{E}'\rightarrow\mathcal{E}$, the associated maps

{subtoposes of
$$
\mathcal{E}'
$$
} $\xrightarrow{e^{-1}} \{subtoposes of \mathcal{E}\}$

are adjoint.

So *e*^{−1} respects arbitrary intersections of toposes and *e*[∗] respects arbitrary unions. In general, *e*[∗] does not respect even finite intersections. On the other hand, we are going to sketch the proof of:

Theorem. – Let $e : \mathcal{E}' \to \mathcal{E}$ be a <u>morphism</u> of toposes. Then:

(i) *The induced pull-back map e* −1 *respects finite unions of toposes.*

(ii) *If the morphism e is "locally connected"*

e [−]¹ *even respects arbitrary unions of toposes and, as a consequence, has a left adjoint*

 $e_!:\{subtoposes of \mathcal{E}'\}\longrightarrow\{subtoposes of \mathcal{E}\}$

characterized by the property that, for any subtoposes $\mathcal{E}_1' \hookrightarrow \mathcal{E}'$ *and* $\mathcal{E}_1 \hookrightarrow \mathcal{E}_2$

$$
\mathcal{C}_1 \mathcal{E}_1' \supseteq \mathcal{E}_1' \implies \mathcal{E}_1' \supseteq f^{-1}\mathcal{E}_1.
$$
 L. Lafforgue Example 3-6, 2024 77/90

Reminder on "locally connected" morphisms:

Definition. –

(i) *A* topos morphism $e = (e^*, e_*) : \mathcal{E}' \to \mathcal{E}$ is called "essential" if

e ∗ : ^E [→] ^E ′ *also has a left adjoint e*! : E ′ [→] ^E*.*

(ii) *An essential morphism of toposes*

$$
\mathbf{\bar{e}}=(\mathbf{e}_!,\mathbf{e}^*,\mathbf{e}_*):\mathcal{E}'\rightarrow\mathcal{E}
$$

 $e = (e_1, e^*, e_*) : \mathcal{E}' \to \mathcal{E}$
is called "locally connected" if, for any base change morphism $\mathcal{E}_1 \xrightarrow{b} \mathcal{E}_2$,
the induced morphism $\mathcal{E}_1 \xrightarrow{f_1 \cdot f_2} \mathcal{E}_2 \xrightarrow{f_1 \cdot f_2} \mathcal{E}_3$ *the induced morphism* $f = (f^*, f^*) : \mathcal{E}'_1 = \mathcal{E}' \times_{\mathcal{E}} \mathcal{E}_1 \rightarrow \mathcal{E}_1$
is of ill conceptial, and the odicint courses *is still essential, and the adjoint squares*

are commutative.

Remark: It can be proved that, in order to verify that an essential morphism $e = (e_1, e^*, e_*) : \mathcal{E}' \to \mathcal{E}$
in "locally connected" it is applying to consider the is "locally connected", it is enough to consider base changes by morphisms $\mathcal{E}_1 = \mathcal{E}/E \rightarrow \mathcal{E}$ associated to objects *E* of \mathcal{E} .

Reduction to the case of locally connected morphisms:

We already know that <u>functors of intersections</u> with a subtopos $\mathcal{E}' \hookrightarrow \mathcal{E}$
recpect finite unions respect finite unions.

So part (i) of the theorem is reduced to part (ii) and the following:

Proposition. – *Any topos morphism ε' → ε factorizes as* $\mathcal{E}' \hookrightarrow \widehat{\mathcal{C}}_J' \longrightarrow \widehat{\mathcal{C}}_J \xrightarrow{\sim} \mathcal{E}$ where $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\begin{array}{cc} \bullet & \mathcal{E}' \longrightarrow \mathcal{C}'_J, \text{ is an embedding of toposes,} \end{array}$ • \hat{C}'_J , → \hat{C}_J *is induced by a <u>fibration</u> C'* $\stackrel{p}{\longrightarrow} C$,
• $J' = p^*(J)$ *is the "Giraud topology" induced by J from C to C'*, **•** \hat{C}_J → \hat{C} *is an equivalence.*

Theorem. –

If $C' \xrightarrow{p} C$ *is a fibration* and $J' = p^*(J)$ *is the "Giraud topology" on* C' *induced by a topology J on* C*, the induced topos morphism*

$$
p:\widehat{\mathcal{C}}'_{J'}\longrightarrow\widehat{\mathcal{C}}_J
$$

is "locally connected".

Reminder on fibrations:

Definition. – *Consider a functor* $p: \mathcal{C} \rightarrow \mathcal{B}$. **(i)** A morphism $x : X_1 \to X_2$ of C is called "p-cartesian" *if, for any morphism* $x_2 : X \to X_2$ *of* C *and any morphism* y_1 : $p(X) \to p(X_1)$ *of B such that* $p(x_2) = p(X) \circ y_1$, *there is a unique morphism* $x_1 : X \to X_1$ *such that* $x_2 = x \circ x_1$ *and* $p(x_1) = y_1$ *.* **(ii)** The functor $p: \mathcal{C} \to \mathcal{B}$ is called a "fibration" *if, for any object* X_1 *of* C *and any morphism* $Y \xrightarrow{y_1} p(X_1)$ *of* B *, there exists a p-cartesian morphism* $X \xrightarrow{x_1} X_1$ *of C* and an <u>isomorphism</u> $y : p(X) \rightarrow Y$ such that $p(x_1) = y_1 \circ y$.

Proposition. – *Consider a fibration* $p: \mathcal{C} \to \mathcal{B}$ of essentially small categories. *Then for any functor* $B' \to B$ *from an essentially small category* B' *to* B , the induced functor $B \times B' \times B'$ is a *i*ll a fibration and the tange exusts *the induced fucntor* $C \times_{\mathcal{B}} \mathcal{B}' \to \mathcal{B}'$ is still a fibration, and the topos square

is cartesian.

Reminder on Giraud topologies:

Proposition. – *Consider a fibration of essentially small categories* $\rho:\mathcal{C}'\longrightarrow \mathcal{C}$ *and the essential morphism it defines* $p = (p_!, p^*, p_*) : \widehat{\mathcal{C}}' \longrightarrow \widehat{\mathcal{C}}.$ *Then, for any subtopos* \widehat{C} , $\longrightarrow \widehat{C}$, *its pull-back by p* $\widehat{{\cal C}}_J'$, $\longrightarrow \widehat{{\cal C}}'$ *is the subtopos defined by the "Giraud topology" J' on C' for which a sieve C on an object X of* C ′ *is covering* $\Bigg\}$ $\overline{\mathcal{L}}$ *if and only if the images by p* $p(x): p(X') \longrightarrow p(X)$
ion morphisms contain *of the p-cartesian morphisms contained in C* $x: X' \longrightarrow X$ *make up a J-covering family of the object p*(*X*) *of* C*.*

Fibrations and locally connected morphisms:

Corollary. – *Consider a fibration p* : C ′ [→] ^C *of essentially small categories. Then:*

(i) *The map*

{*topologies on* ^C} [−][→] {*topologies on* ^C ′ } *J* \mapsto *J'* = *Giraud topology induced by J*
J torcostions of topologies Jp other werds the *respects arbitrary intersections of topologies. In other words, the map p*^{−1} : {*subtoposes of C*} → {*subtoposes of C'*}
bitrary unions of aubtoposes *respects arbitrary unions of subtoposes.*

(ii) *For any topology J on* C *and the induced Giraud topology J* ′ *on* C ′ *, the functor of composition with p*

$$
\boldsymbol{\rho}^*:\widehat{\mathcal C}\longrightarrow \widehat{\mathcal C}'
$$

p^{*} : \hat{C} → \hat{C}'
transforms J-sheaves into J'-sheaves and respects arbitrary limits. In other words, there are two adjoint commutative squares:

Factorization of topos morphisms:

- Consider an arbitrary topos morphism $\mathcal{E}' \stackrel{e}{\longrightarrow} \mathcal{E}.$
- We can write $\mathcal{E} \cong \widehat{\mathcal{C}}_J$, $\mathcal{E}' \cong \widehat{\mathcal{D}}_K$ where $\mathcal{C} \hookrightarrow \mathcal{E}, \mathcal{D} \hookrightarrow \mathcal{E}'$ are small full subcategories such that $e^* : \mathcal{E} \to \mathcal{E}'$ restricts to a functor $\rho : \mathcal{C} \to \mathcal{D}$.

Theorem (O.C., see [Denseness]). – *Consider the small category* C ′ = D/C *whose*

objects are triplets $(Y, X, Y \rightarrow \rho(X))$ *consisting in*

objects Y of D *, X of* C *and a morphism* $Y \xrightarrow{t} \rho(X)$ *of* D *,*

$$
\frac{\text{morphisms } (Y_1, X_1, Y_1 \xrightarrow{t_1} \rho(X_1)) \longrightarrow (Y_2, X_2, Y_2 \xrightarrow{t_2} \rho(X_2))}{X_1 \xrightarrow{t_1} X_2 \xrightarrow{t_2} X_1}
$$

are pairs of compatible morphisms $(Y_1 \xrightarrow{y} Y_2, X_1 \xrightarrow{x} X_2)$ *.*

Let K' and J' be the topologies on $C' = D/C$ *induced* by K and J via the forgetful functors $\mathcal{D}/\mathcal{C} \to \mathcal{D}$ and $\mathcal{D}/\mathcal{C} \to \mathcal{C}$. Then:

(i) The morphism $\widehat{C}_{K'}^{\prime} \to \widehat{D}_K$ induced by $C' = \mathcal{D}/\mathcal{C} \to \mathcal{D}$ is an *equivalence of toposes.*

(ii) The topology K' contains J', and there is an embedding \widehat{C}_{K}^{\prime} , $\hookrightarrow \widehat{C}_{J}^{\prime}$,

(iii) *The forgetful functor* C ′ ⁼ ^D/^C [→] ^C *is a fibration*

and J ′ *is the "Giraud topology" induced by J.*

 \hat{U} *(iv) The topos morphism* $\mathcal{E}' \xrightarrow{e} \mathcal{E}$ *factorizes* as $\hat{\mathcal{D}}_K \cong \widehat{\mathcal{C}}'_{K'} \hookrightarrow \widehat{\mathcal{C}}'_{J'} \longrightarrow \widehat{\mathcal{C}}_J$.

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

Galois correspondences between subobjects:

Lemma. –

Consider an essential morphism of toposes $e = (e_1, e^*, e_*) : \mathcal{E}' \to \mathcal{E}$ *.*
For any object F' of \mathcal{E}' , consider the two mana *For any object* E' of E' , consider the two maps

$$
\{\underline{\text{subobjects}} \ C' \hookrightarrow E'\} \xrightarrow[\mathcal{G}_{E'}]{F_{E'}} \{\underline{\text{subobjects}} \ C \hookrightarrow e_! E'\}
$$

 θ *E defined by*

$$
F_{E'}(C' \hookrightarrow E') = (\text{Im } e_! C' \hookrightarrow e_! E'),
$$

$$
G_{E'}(C \hookrightarrow e_! E') = (e^* C \times_{e^* e_! E'} E' \hookrightarrow E').
$$

*G*_{*E'*}($C \hookrightarrow e_!E'$) = ($e^*C \times_{e^*e_!E'} E' \hookrightarrow E'$).
Then, these maps respect the <u>order relations</u> ⊆ <i>on these sets, and F_F *is left adjoint of* G_F *.*

Corollary. –

- **(i)** *There is an induced one-to-one correspondence between the* $(C' \hookrightarrow E')$ *which are <u>fixed</u> under* $G_{E'} \circ F_{E'}$ *
and the* $(G \wedge G) \circ F$ *which are fixed under* F \overline{AB} *and the* $(C \hookrightarrow e_1E')$ *which are <u>fixed</u> under* $F_{E'} \circ G_{E'}$ *.*
- (ii) For any $C' \hookrightarrow F'$, its image under $G_{F'} \circ F_{F'}$ is the employed fixed point which contains it. *is the smallest fixed point which contains it.*
- (iii) *For any C* \hookrightarrow *e*_: *E'*, *its image under F_E</sub>* \circ *G_E c is the biggest fined point which is contained if is the biggest fixed point which is contained in it.*

Union of fixed points:

We still consider an essential morphism $e = (e_!, e^*, e_*) : \mathcal{E}' \to \mathcal{E}.$

Lemma. –

For any family of subobjects of an object E ′ *of* E ′

$$
C'_{k} \longleftrightarrow E', k \in K, which are fixed under $G_{E'} \circ F_{E'}$,
$$

their union

$$
\bigvee_{k \in K} C'_k \longrightarrow E' \text{ is fixed under } G_{E'} \circ F_{E'}.
$$

Proof:

If each $C'_k \hookrightarrow E'$ corresponds to a fixed subobject $C_k \hookrightarrow e_1E'$, the formulas $C'_{k} = e^* C_{k} \times_{e^* e_! E'} E'$, $k \in K$, induce the formula

$$
\bigvee_{k \in K} C'_{k} = e^* \left(\bigvee_{k \in K} C_{k} \right) \times_{e^* e_! E'} E'.
$$

Corollary. – *For any object E' of C',* any subobject $C' \hookrightarrow E'$ *contains a biggest fixed subobject* ◦

$$
C' \hookrightarrow C' \hookrightarrow E'.
$$

Stability of fixed points:

Lemma. –

Consider an essential morphism of toposes $e = (e_1, e^*, e_*) : \mathcal{E}' \to \mathcal{E}$ *.*
Then: *Then:*

(i) For any morphism
$$
E'_2 \to E'_1
$$
 of \mathcal{E}' , the map
\n $(C' \hookrightarrow E'_1) \longmapsto (C' \times_{E'_1} E'_2 \hookrightarrow E'_2)$
\n \downarrow

transforms

any image under $G_{E'_1}$ of some $C \hookrightarrow e_1 E'_1$
into the image under $G \times G \times G$ into the image under $G_{E_2'}$ of $C \times_{e_1 E_1'} e_1 E_2'$.

(ii) For any object E of $\mathcal E$ and any subobject $C \hookrightarrow E$, *the associated subobject*

 $e^*C \longrightarrow e^*E$ *is the image under G^e* [∗]*^E of the subobject* $C \times_E e_!e^*E \longrightarrow e_!e^*E.$

Proof:

(i) comes from the fact that *e* ∗ respects fiber products.

(ii) Indeed, if $C_1 = C \times_E e_1 e^* E \longrightarrow e_1 e^* E$, we have

$$
e^*C_1\times_{e^*e_!e^*E}e^*E=(e^*C\times_{e^*E}e^*e_!e^*E)\times_{e^*e_!e^*E}e^*E=e^*C\hookrightarrow e^*E.
$$

Characterization of pull-backs under essential morphisms:

Theorem (O.C., L.L., to appear in [Engendrement]). – *Consider an essential morphism of toposes* $e = (e_1, e^*, e_*) : \mathcal{E}' \to \mathcal{E}$ *.*
Then for any subtenesse defined by a topology I on \mathcal{E}' . *Then for any subtoposes defined by a topology J on* E $\mathcal{E}_I \hookrightarrow \mathcal{E}$. *its pull-back under e* : $\mathcal{E}' \to \mathcal{E}$ *is defined by the topology J'*
consisting in manamarphisms $C' \leftrightarrow F'$ of S' *consisting in monomorphisms* $C' \hookrightarrow E'$ *of* \mathcal{E}'
vorifying the condition that verifying the condition that \int *there exists a monomorphism* $(C \rightarrow e_1 E')$ *in J*
augh that $(C' \rightarrow E')$ *agatains* $(e^* C)$ *in* \mathcal{L} *such that* $(C' \hookrightarrow E')$ $\underline{\text{contains}}$ $(e^*C \times_{e^*e_!} E' \in E' \hookrightarrow E').$

Proof:

- The topology *J'* on \mathcal{E}' which defines the pull-back of $\mathcal{E}_J \hookrightarrow \mathcal{E}_J$
is apparented by the managements of $\overline{\mathcal{C}}$, $\overline{\mathcal{E}}$ is generated by the monomorphisms $(e^* \overline{C} \hookrightarrow e^* \overline{E})$ induced by elements $(C \hookrightarrow E)$ of *J*.
- According to part (ii) of the previous lemma, all these generators belong to the class J" of monomorphisms $(C' \hookrightarrow E')$ which verify the above <u>condition</u>.
An *U* is atable, we also have that $U' \subseteq U$.
- As J' is stable, we also have that $J'' \subseteq J'$.
- To conclude, we need to prove that J'' is a topology on \mathcal{E}' .

Verification of the topology axioms:

- We are reduced to proving that the class J" of monomorphisms $(C' \hookrightarrow E')$ such that there exists $(C \hookrightarrow e_1 E')$ in *J*
verifying $C \times C'$ is a tapeled $\mathsf{verifying} \qquad \mathsf{e}^* \mathsf{C} \times_{\mathsf{e}^* \mathsf{e}_! \mathsf{E}'} \mathsf{E}' \subseteq \mathsf{C}' \qquad \text{is a } \operatorname{\mathsf{topology}} \text{ on } \mathcal{E}'.$
- It obviously verifies the maximality axioms.
- Stability results from part (i) of the previous lemma.
- For transitivity, consider two monomorphisms of \mathcal{E}'

 $C' \hookrightarrow \overline{E'}$ and $\overline{D'} \hookrightarrow \overline{E'}$
rphio fomily (*E*) \overline{D})

and a globally epimorphic family $(E'_k \to D')_{k \in K}$
augh that there oviet elements of L such that there exist elements of *J*

 $D \hookrightarrow e_!E'$ and $C_k \hookrightarrow e_!E'_k$, $k \in K$,

verifying

 $D' \supseteq e^*D \times_{e^*e_!E'} E'$ and $C' \times_{E'} E'_k \supseteq e^*C_k \times_{e^*e_!E'_k} E'_k$, $k \in K$. The family of morphisms $e_!E'_k \rightarrow e_!D'$, $k \in K$, is still globally epimorphic. Let $C \hookrightarrow e_!E'$ be the <u>union</u> of the images of the morphisms

$$
C_k \longrightarrow e_!E'_k \longrightarrow e_!D' \longrightarrow e_!E'.
$$

Then

$$
\int -
$$
 the monomorphism $C \hookrightarrow e_! E'$ belongs to J ,
\n
$$
-\text{ the subobject } C' \hookrightarrow E' \text{ contains } e^* C \times_{e^* e_! E'} E
$$
\nwhich proves that J'' verifies transitivity.

′ ,

Characterization of pull-backs under locally connected morphisms:

Theorem (O.C., L.L., to appear in [Engendrement]). – *Consider a locally connected topos morphism* $\overline{e} = (e_!, e^*, e_*) : \mathcal{E}' \to \mathcal{E}.$ *Consider a subtopos defined by a topology J on* E $\overline{\mathcal{E}_I \hookrightarrow \mathcal{E}}$ and its pull-back by e defined by a topology J' on \mathcal{E}' $\mathcal{E}'_{J'} \hookrightarrow \mathcal{E}'.$ Then a monomorphism of \mathcal{E}' $C' \longrightarrow F'$
set fixed a *belongs to J* ′ *if and only if its biggest fixed subobject* $\overset{\circ}{C'} \longrightarrow E'$ *corresponds to a fixed subobject* $C \longrightarrow e_!E'$ *which belongs to J.*

As this characterization respects intersections of topologies, we get:

Corollary. – *If a topos morphism e* : E ′ [→] ^E *is locally connected, the associated pull-back map e* [−]¹ *on subtoposes respects arbitrary unions, so has a left adjoint e*! *.*

Characterization in the case of fixed points:

We consider the locally connected morphism

 $\overline{e} = (\overline{e_1}, \overline{e^*}, e_*) : \mathcal{E}' \longrightarrow \mathcal{E},$
defined by a tenglogy

a subtopos $\mathcal{E}_J \hookrightarrow \mathcal{E}$ defined by a topology *J* and its pull-back \mathcal{E}'_J , $\hookrightarrow \mathcal{E}'$ defined by a topology *J'*. The proof of the theorem reduces to:

Lemma. – *For any object* E' *of* E' *and any fixed subobject* $C' \hookrightarrow E'$, which corresponds to a fixed subobject $C \hookrightarrow E'$ *which corresponds to a fixed subobject* $C \rightarrow e_1E'$, the monomorphism $C' \rightarrow E'$ belongs to V' if and or $the monomorphism C' \rightarrow E'$ *belongs to J'* if and only if $C \rightarrow e_1E'$ *belongs to J.*

Proof:

- As $C' = e^* C \times_{e^* e_1 E'} E', C' \hookrightarrow E'$ belongs to *J'* if $C \hookrightarrow e_1 E'$ belongs to *J*.
- The implication in the reverse direction is a consequence of the commutativity of the square

which is part of the definition of "local connectedness" of *e*.