Geometry and logic of subtoposes

by Laurent Lafforgue

(Lagrange Center, Huawei Research Center in Boulogne-Billancourt, France)

<u>Plan</u> :

- I. Introduction: Why toposes?
- II. Subtoposes and Grothendieck topologies
- III. Generation of topologies and provability
- IV. Geometric operations on subtoposes

"Toposes in Mondovi" Summer School, September 3-6, 2024

1/90

References:

- [SGA, tome I] "Théories des topos" by A. Grothendieck, J.-L. Verdier.
- [Elephant] "Sketches of an Elephant: A Topos Theory Compendium" by P. Johnstone.
- [Relative] "Relative Topos Theory via Stacks" by O. Caramello and R. Zanfa.
- [Denseness] "Denseness conditions, morphisms and equivalences of toposes" by O. Caramello.
- [TST] "Theories, Sites, Toposes" by O. Caramello.
- [Engendrement] "Engendrement de topologies, démontrabilité et opérations sur les sous-topos" (to appear soon) by O. Caramello and L. Lafforgue.

I. Why subtoposes?

• Why toposes?

- Toposes as a wide generalisation of topological spaces.
- Toposes as universal invariants.
- Toposes as pastiches of the category of sets.
- Toposes as incarnations of the semantics of theories.
- The multiple expressions of the notion of subtopos
 - The categorical definition.
 - The expression in terms of Grothendieck topologies.
 - The logical expression in terms of quotient theories.
 - Provability as a topological problem.
- The geometric operations on subtoposes
 - Inner operations: intersection, union, difference.
 - Outer operations: existential push-forward,

pull-back, universal push-forward.

Toposes as a wide generalisation of topological spaces:

Definition. – A topos is a category \mathcal{E} which is equivalent to the category $\widehat{\mathcal{C}}_{.1}$ of set-valued "sheaves" on a site (\mathcal{C}, J) consisting in

$$C = (essentially) small category,$$

$$J =$$
 "topology" on $C =$ notion of "covering".

Remark: Any topological space X defines the topos

 $\overline{\mathcal{E}_{X}} = \text{category}$ of set-valued sheaves on

 $\begin{cases} \mathcal{C}_X = & \text{category of open subsets of } X, \\ J_X = & \text{ordinary notion of covering by subsets.} \end{cases}$

Definition. – A morphism of toposes $\mathcal{E}' \xrightarrow{f} \mathcal{E}$ is a pair of adjoint functors

$$(\mathcal{E} \xrightarrow{f^*} \mathcal{E}', \ \mathcal{E}' \xrightarrow{f_*} \mathcal{E})$$

such that f* respects finite limits.

Remarks:

- Any continous map $X' \xrightarrow{f} X$ induces a topos morphism $f: \mathcal{E}_{X'} \longrightarrow \mathcal{E}_{Y}$.
- The map $(X' \xrightarrow{f} X) \mapsto (\mathcal{E}_{X'} \to \mathcal{E}_X)$ is one-to-one if X is "sober". $\{sets\} = Pt \longrightarrow \mathcal{E}.$
- Points of a topos \mathcal{E} are defined as topos morphisms

L. Lafforgue

Toposes as universal invariants:

Cohomology:

Sheaf cohomology on topological spaces generalises to arbitrary linear objets of arbitrary toposes related by arbitrary morphisms of toposes.

Homotopy:

The construction of fundamental groups π_1 and higher homotopy groups π_i , i > 2, of locally connected topological spaces X factorises through their associated toposes \mathcal{E}_X and generalises to toposes \mathcal{E} which are "locally connected".

Topos invariants and Caramello's "bridge" theory:

- More generally, any construction or property which is

 - phrased in categorical terms,
 well-defined for toposes (or wide classes of toposes),
 invariant under equivalences of toposes,

defines an invariant of sites (\mathcal{C}, J) .

The expression of such an invariant in different equivalent sites

 (\mathcal{C}, J) and (\mathcal{C}', J') related by $\widehat{\mathcal{C}}_I \cong \widehat{\mathcal{C}}'_{II}$

often generates unexpected equivalences.

Toposes as pastiches of the category of sets:

Theorem (Grothendieck-Giraud). – A category \mathcal{E} is a topos if and only if:

- (0) \mathcal{E} is locally small.
- (1) Arbitrary <u>limits</u> are well-defined in \mathcal{E} .
- (2) Arbitrary <u>colimits</u> are well-defined in \mathcal{E} .
- (3) Base change functors $E' \times_E \bullet$ in \mathcal{E} respect arbitrary <u>colimits</u>.
- (4) Filtering colimit functors in *E* respect finite limits.
- (5) <u>Sums</u> in \mathcal{E} are disjoint.
- (6) A morphism in *E* is an isomorphism if (and only if) it is a monomorphism and an epimorphism.
- (7) <u>Quotients</u> of an objet E of \mathcal{E} correspond <u>one-to-one</u> to equivalence relations $R \hookrightarrow E \times E$.
- (8) The subobjects of an object E of \mathcal{E} form a <u>set</u>.
- (9) The quotients of an object E of \mathcal{E} form a <u>set</u>.
- (10) The <u>contravariant functor</u> $E \mapsto \{subobjects of E\}$ is representable by an object Ω of \mathcal{E} , the "subobject classifyer".
- (11) For any objects E, E' of E, the functor Hom(E × •, E') is representable by an object Hom(E, E') of E.
- (12) The category \mathcal{E} has small "separating" families of objects.

Toposes for expressions of the semantics of theories:

Let \mathbb{T} be a "geometric" first-order theory consisting in

- a vocabulary (or "signature")

 - names of objects (or "sorts"),
 names of operations (or "function symbols"),
 names of relations (or "relation symbols"),
- a family of "axioms" taking the form of implications

$$\varphi(x_1^{A_1}\cdots x_n^{A_n})\vdash \psi(x_1^{A_1}\cdots x_n^{A_n})$$

between "formulas" in variables

 $\overline{x_1^{A_1}\cdots x_n^{A_n}}$ associated with "sorts" A_1,\cdots,A_n

which are "geometric" in the sense that they only use the symbols

 $\left\{ \begin{array}{l} \land \text{ (finite conjunction), } \top \text{ (truth),} \\ \lor \text{ (arbitrary disjunction), } \bot \text{ (false),} \\ \exists \text{ (existential quantifier in part of the variables).} \end{array} \right.$

Proposition. – (i) For any topos \mathcal{E} ,

there is a well-defined category of "models" of \mathbb{T} in \mathcal{E} \mathbb{T} -mod (\mathcal{E}) .

(ii) Any topos morphism $f: \mathcal{E}' \to \mathcal{E}$ induces a pull-back functor of models of \mathbb{T}

 $f^* : \mathbb{T}$ -mod $(\mathcal{E}) \longrightarrow \mathbb{T}$ -mod (\mathcal{E}') .

Toposes as incarnations of the semantics of theories:

Theorem (Grothendieck, Hakim, Lawvere, Joyal, Makkai, Reyes, ···). –

For any first-order geometric theory \mathbb{T} , there exist

- a topos $\mathcal{E}_{\mathbb{T}}$ (called the "classifying topos" of \mathbb{T}), a <u>model</u> $U_{\mathbb{T}}$ of \mathbb{T} in $\mathcal{E}_{\mathbb{T}}$ (called the "<u>universal model</u>" of \mathbb{T})

such that, for any topos \mathcal{E} , the <u>functor</u>

$$\begin{array}{cccc} (\mathcal{E} \xrightarrow{f} \mathcal{E}_{\mathbb{T}}) & \longmapsto & f^* U_{\mathbb{T}} \\ \operatorname{Geom}(\mathcal{E}, \mathcal{E}_{\mathbb{T}}) & \longrightarrow & \mathbb{T}\operatorname{-mod}(\mathcal{E}) \\ & \parallel & & \parallel \\ \left\{ \begin{array}{c} category \ of \\ topos \ morphisms \\ \mathcal{E} \to \mathcal{E}_{\mathbb{T}} \end{array} \right\} & & \left\{ \begin{array}{c} category \ of \\ ``models" \\ of \ \mathbb{T} \ in \ \mathcal{E} \end{array} \right.$$

is an equivalence of categories.

Remarks: • Conversely, for any topos \mathcal{E} , there are infinitely many first-order geometric theories \mathbb{T} such that $\mathcal{E}_{\mathbb{T}} \cong \mathcal{E}$. • Theories \mathbb{T}, \mathbb{T}' such that $\mathcal{E}_{\mathbb{T}} \cong \mathcal{E}_{\mathbb{T}'}$ can be called "semantically equivalent".

The multiple expressions of the notion of subtopos :

Categorical definition. -

A subtopos of a topos \mathcal{E} is a full subcategory $\mathcal{E}' \hookrightarrow \mathcal{E}$ such that:

- (1) The embedding functor $j_* : \mathcal{E}' \hookrightarrow \mathcal{E}$ has a left adjoint $j^* : \mathcal{E} \to \mathcal{E}'$.
- (2) This left adjoint $j^* : \mathcal{E} \to \mathcal{E}'$ respects not only arbitrary <u>colimits</u> but also <u>finite limits</u>.
- (3) An object E of *E* belongs to the full subcategory *E'* if and only if the canonical morphism

 $E \rightarrow j_* j^* E$ is an isomorphism.

Remarks:

• A topos morphism $f: \mathcal{E}' \to \mathcal{E}$ can be called an "embedding" if its push-forward component $f_*: \mathcal{E}' \to \mathcal{E}$ is fully faithful or, equivalently, if the natural transformation $f^* \circ f_* \to \operatorname{Id}_{\mathcal{E}'}$ is an isomorphism. • Subtoposes of a topos \mathcal{E} can equivalently be defined as equivalence classes of embeddings $\mathcal{E}' \hookrightarrow \mathcal{E}$.

Expressions of subtposes in terms of Grothendieck topologies:

Theorem (Grothendieck, SGA 4). -

Let ${\mathcal E}$ be a topos presented as the category of sheaves

 $\widehat{\mathcal{C}}_J$ on a site (\mathcal{C}, J)

consisting in an essentially small category ${\cal C}$ endowed with a topology J. Then:

(i) Any topology J' on C which <u>contains</u> J defines a <u>subtopos</u>

$$\widehat{\mathcal{C}}_{J'} \longrightarrow \widehat{\mathcal{C}}_{J} \cong \mathcal{E}$$
.

(ii) Conversely, any subtopos of $\widehat{\mathcal{C}}_J \cong \mathcal{E}$ is <u>associated</u> with a unique topology $J' \supseteq J$ of \mathcal{C} .

Consequences:

- The subtoposes of any topos $\mathcal E$ form a partially ordered set.
- Arbitrary joins ∨ of subtoposes are always well-defined. They correspond to arbitrary intersections of topologies.
- Arbitrary <u>intersections</u> ∧ of subtoposes are always well-defined. They correspond to topologies generated by families of topologies.

Logical expression of subtoposes in terms of quotient theories:

Definition. – Let \mathbb{T} be a geometric first-order theory written in a vocabulary Σ . Then:

(i) A quotient theory T' of T is a geometric first-order theory written in the same vocabulary Σ and such that any implication (or "sequent") of geometric formulas φ(x₁^{A₁},..., x_n^{A_n}) ⊢ ψ(x₁^{A₁},..., x_n^{A_n}) which is provable in T is also provable in T'.
(ii) Two quotient theories T₁ and T₂ of T are called "syntactically equivalent" φ(x) ⊢ ψ(x).

Theorem (O.C., PhD thesis; see chapter 3 of [TST]). -

- (i) Any quotient theory \mathbb{T}' of a geometric first-order theory \mathbb{T} is classified by a subtopos $\mathcal{E}_{\mathbb{T}'} \hookrightarrow \mathcal{E}_{\mathbb{T}}$.
- (ii) Conversely, any subtopos $\mathcal{E}' \hookrightarrow \mathcal{E}_{\mathbb{T}}$ is associated with a quotient theory \mathbb{T}' of \mathbb{T} , which is unique up to syntactic equivalence.

Provability as a topological problem:

Corollary. – Suppose \mathbb{T} is a geometric first-order theory written in a vocabulary Σ and its classifying topos $\mathcal{E}_{\mathbb{T}}$ is presented as the category of sheaves on a site (C, J): $\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}_{J}$. Then it is possible to construct from any sequent of geometric formulas $\varphi(\vec{x}) \vdash \psi(\vec{x})$ in the vocabulary Σ a family of "sieves" on C $\mathcal{X}_{\vec{x}, \varphi, \psi}$ such that: (i) For any quotient theory \mathbb{T}' of \mathbb{T} defined by a family of extra axioms $\varphi_i(\vec{x}_i) \vdash \psi_i(\vec{x}_i), i \in I$, the associated subtopos $\mathcal{E}_{\mathbb{T}'} \hookrightarrow \mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}_{\mathcal{I}}$ corresponds to the topology $J' \supset J$ on C generated by J and the <u>fami</u>lies of sieves $\mathcal{X}_{\vec{\mathbf{X}}_i, \varphi_i, \psi_i}, i \in I.$ (ii) Any implication of geometric formulas $\phi(\vec{x}) \vdash \psi(\vec{x})$ is provable in \mathbb{T}' if and only if all sieves in the associated family $\mathcal{X}_{\vec{x},\phi,\psi}$ belong to the topology J' generated by J and the families $\mathcal{X}_{\vec{X}_i,\varphi_i,\psi_i}$

L. Lafforgue

Geometry and logic of subtoposes

12/90

First inner geometric operations on subtoposes:

Lemma. – Let \mathcal{E} be a topos and $(\mathcal{E}_i \hookrightarrow \mathcal{E})_{i \in I}$ a family of subtoposes. (i) There exists a unique subtopos $\bigvee \mathcal{E}_i \hookrightarrow \mathcal{E}$ characterized by the property that, for any subtoposes $\mathcal{E}' \hookrightarrow \mathcal{E}$, $\mathcal{E}' \supseteq \bigvee \mathcal{E}_i \iff \mathcal{E}' \supseteq \mathcal{E}_i, \quad \forall i \in I.$ (ii) There exists a unique subtopos $\bigwedge_{i \in I} \mathcal{E}_i \longrightarrow \mathcal{E}$ characterized by the property that, for any subtoposes $\mathcal{E}' \hookrightarrow \mathcal{E}$, $\mathcal{E}' \subseteq \bigwedge \mathcal{E}_i \iff \mathcal{E}' \subseteq \mathcal{E}_i, \quad \forall i \in I.$ **Remark:** If $\mathcal{E} \cong \widehat{\mathcal{C}}_{I}$ and the subtoposes $\mathcal{E}_i \hookrightarrow \mathcal{E}$ are associated with topologies $J_i \supseteq J$, $i \in I$, then: • the subtopos $\bigvee \mathcal{E}_i$ is associated with the topology i∈I $\bigcap_{i\in I} J_i$, • the subtopos $\bigwedge \mathcal{E}_i$ is associated with the topology i∈I generated by the J_i 's, $i \in I$. Geometry and logic of subtoposes L. Lafforgue September 3-6, 2024 13/90

The inner operation of difference of subtoposes:

Proposition (Joyal?; see [Elephant]). – For any pair of subtoposes $\mathcal{E}_1, \mathcal{E}_2$ of a topos \mathcal{E} , there exists a unique subtopos $\mathcal{E}_1 \setminus \mathcal{E}_2 \hookrightarrow \mathcal{E}$

<u>characterized</u> by the property that, for any subtopos $\mathcal{E}' \hookrightarrow \mathcal{E}$, $\mathcal{E}_1 \setminus \mathcal{E}_2 \subseteq \mathcal{E}' \iff \mathcal{E}_1 \subseteq \mathcal{E}_2 \lor \mathcal{E}'$.

Remark:

If $\mathcal{E} \cong \widehat{\mathcal{C}}_J$ and $\mathcal{E}_1, \mathcal{E}_2$ are defined by topologies J_1, J_2 on \mathcal{C} , then $\mathcal{E}_1 \setminus \mathcal{E}_2$ is defined by a topology denoted

$$(J_2 \Rightarrow J_1)$$

and <u>characterized</u> by the property that, for any topology J' on C,

$$(J_2 \Rightarrow J_1) \supseteq J' \iff J_1 \supseteq (J_2 \cap J').$$

Corollary. – For any subtopos $\mathcal{E}' \hookrightarrow \mathcal{E}$ of a topos \mathcal{E} , we have:

- (i) The map of <u>union</u> with E' E' ∨ •
 respects arbitrary intersections of subtoposes of E.
- (ii) The map of <u>intersection</u> with $\mathcal{E}' \qquad \mathcal{E}' \wedge \bullet$ respects finite unions of subtoposes of \mathcal{E} .

L. Lafforgue

Images of topos morphisms:

$\begin{array}{c} \textbf{Proposition.} -\textit{Any topos morphism} \quad f: \mathcal{E}' \to \mathcal{E} \\ \mathcal{E}' \xrightarrow{\overline{f}} \textit{Im}(f) \xrightarrow{j_f} \mathcal{E} \end{array} \underbrace{\textit{uniquely factorizes as}}_{\textit{where}} as$

- $\operatorname{Im}(f) \xrightarrow{j_f} \mathcal{E}$ is an embedding of a subtopos,
- $\mathcal{E}' \xrightarrow{\overline{f}} \operatorname{Im}(f)$ is a "surjective" topos morphism in the sense that its pull-back component $\overline{f}^* : \operatorname{Im}(f) \longrightarrow \mathcal{E}'$ is <u>faithful</u>.

Remarks:

15/90

Existential push-forward and pull-back of subtoposes:

Proposition. – Let $f : \mathcal{E}' \to \mathcal{E}$ be a morphism of toposes. Then:

(i) The map

 $\overline{f}_*: \{subtoposes \mathcal{E}'_1 \hookrightarrow \mathcal{E}'\} \longrightarrow \{subtoposes \mathcal{E}_1 \hookrightarrow \mathcal{E}\},\$

$$(\mathcal{E}'_{1} \hookrightarrow \mathcal{E}') \longmapsto (\operatorname{Im}(\mathcal{E}'_{1} \hookrightarrow \mathcal{E}' \xrightarrow{t} \mathcal{E}) \hookrightarrow \mathcal{E})$$

respects the <u>order relation</u> \supseteq and arbitrary unions of subtoposes.

(ii) Equivalently, it has a left adjoint

 $\begin{array}{c} f^{-1} : \{ \textit{subtoposes } \mathcal{E}_1 \hookrightarrow \mathcal{E} \} \longrightarrow \{ \textit{subtoposes } \mathcal{E}'_1 \hookrightarrow \mathcal{E}' \}, \\ (\mathcal{E}_1 \hookrightarrow \mathcal{E}) \longmapsto (f^{-1} \mathcal{E}_1 \hookrightarrow \mathcal{E}') \end{array}$

characterized by the property that,

for any subtoposes $\mathcal{E}_1 \hookrightarrow \mathcal{E}$ and $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$,

 $f^{-1}\mathcal{E}_1 \supseteq \mathcal{E}'_1 \Leftrightarrow \mathcal{E}_1 \supseteq f_*(\mathcal{E}'_1) = \operatorname{Im}(\mathcal{E}'_1).$

Remark:

The map f^{-1}

respects the order relation \supseteq

and arbitrary intersections of subtoposes.

L. Lafforgue

Geometry and logic of subtoposes

Universal push-forward of subtoposes:

Theorem (O.C., L.L., to appear in [Engendrement]). – Let $f : \mathcal{E}' \to \mathcal{E}$ be a topos morphism which is "locally connected". Then:

(i) The associated pull-back map

 $\begin{array}{c} f^{-1} : \{ subtoposes \ \mathcal{E}_1 \hookrightarrow \mathcal{E} \} \longrightarrow \{ subtoposes \ \mathcal{E}_1' \hookrightarrow \mathcal{E}' \}, \\ (\mathcal{E}_1 \hookrightarrow \mathcal{E}) \longmapsto (f^{-1}\mathcal{E}_1 \hookrightarrow \mathcal{E}') \end{array}$

respects arbitrary unions of subtoposes.

(ii) Equivalently, it has a left adjoint $f_{1}: \{subtoposes \mathcal{E}'_{1} \hookrightarrow \mathcal{E}'\} \longrightarrow \{subtoposes \mathcal{E}_{1} \hookrightarrow \mathcal{E}\}, \\ (\mathcal{E}'_{1} \hookrightarrow \mathcal{E}') \longmapsto (f_{1}\mathcal{E}'_{1} \hookrightarrow \mathcal{E}') \\ \underline{characterized} \text{ by the property that,} \\ \text{for any subtoposes } \mathcal{E}_{1} \hookrightarrow \mathcal{E} \text{ and } \mathcal{E}'_{1} \hookrightarrow \mathcal{E}', \\ f_{1}\mathcal{E}'_{1} \supseteq \mathcal{E}_{1} \Leftrightarrow \mathcal{E}'_{1} \supseteq f^{-1}\mathcal{E}_{1}. \end{cases}$

Corollary. – For any topos morphism $f : \mathcal{E}' \to \mathcal{E}$, the associated pull-back map $f^{-1} : \{subtoposes \ \mathcal{E}_1 \hookrightarrow \mathcal{E}\} \longrightarrow \{subtoposes \ \mathcal{E}'_1 \hookrightarrow \mathcal{E}'\}$

respects finite unions of subtoposes.

II. Subtoposes and Grothendieck topologies:

- The general notion of Galois connection
 - Equivalences induced by pairs of adjoint functors.
 - The particular case of ordered structures.
 - Pairs of adjoint functors defined by relations.
 - Induced equivalences and generation processes.
- The duality of sieves and presheaves
 - Definition of their relation.
 - The induced duality of topologies and subtoposes.
 - Grothendieck topologies as fixed points.
 - Subtoposes as fixed points.
- The duality of monomorphisms and objects in a topos
 - Definition of their relation.
 - The induced notion of topology on a topos.
 - The induced duality of topologies and subtoposes.
- The duality of sieves and monomorphisms of presheaves
 - Definition of their relation.
 - The induced duality fo topologies and closedness properties.
 - Topologies as fixed points.
 - Closedness properties as fixed points.

Equivalences induced by pairs of adjoint functors:

$$\begin{array}{l} \textbf{Proposition.}-\textit{Consider a pair of adjoint functors}\\ \hline (\mathcal{C} \xrightarrow{F} \mathcal{D}, \mathcal{D} \xrightarrow{G} \mathcal{C}) \end{array} \\ \textbf{between locally small categories.} \\ \textit{Let } \mathcal{C}' \textit{ [resp. } \mathcal{D}' \textit{] be the full subcategory of } \mathcal{C} \textit{ [resp. } \mathcal{D} \textit{] } \\ \textbf{on "fixed points", i.e. objects } X \textit{ of } \mathcal{C} \textit{ [resp. } Y \textit{ of } \mathcal{D} \textit{] } \\ \textbf{such that the canonical adjunction morphism} \\ \hline X \longrightarrow G \circ F(X) \qquad \textit{ [resp. } F \circ G(Y) \rightarrow Y \textit{] } \\ \textbf{is an isomorphism.} \\ \hline Then F \textit{ and } G \textit{ induce converse equivalences} \end{array}$$

$$\mathcal{C}' \xrightarrow{\sim}_{\sim} \mathcal{D}'.$$

Proof: If $X \to G \circ F(X)$ is an isomorphism and Y = F(X), then $Y \to F \circ G(Y)$ is also an isomorphism. This implies that the canonical morphism

 $\overline{F \circ G(Y) \rightarrow Y}$ is an isomorphism

as the composite

$$F(X) \to F \circ G \circ F(X) \to F(X)$$
 is $\mathrm{Id}_{F(X)}$.

The particular case of ordered structures:

Corollary. – Consider a pair of partially ordered sets or classes related by a pair of order-preserving maps $(C, \leq) \xrightarrow{F} (D, \leq)$ which are adjoint in the sense that $F(c) \leq d \Leftrightarrow c \leq G(d), \quad \forall c \in C, \forall d \in D.$ Then: (i) If $C' = \{c \in C \mid G \circ F(c) = c\}$ and $D' = \{d \in D, F \circ G(d) = d\}$, F and G induce inverse bijections $C' \rightleftharpoons D'$. (ii) An element $c \in C$ [resp. $d \in D$] is fixed by $G \circ F$ [resp. by $F \circ G$] if and only if it is an image in the sense that $c \in \text{Im}(G)$ [resp. $d \in \text{Im}(F)$]. **Remarks:** For any $c \in C$ [resp. $d \in D$], we have $c < G \circ F(c)$ [resp. $F \circ G(d) \leq d$] and $G \circ F(c) < c'$ if $c' \in C'$ and c < c'[resp. $d' < F \circ G(d)$ if $d' \in D'$ and d' < d]. **Proof of (ii):** If c = G(d), we have $c < (G \circ F)(c) = G \circ (F \circ G)(d) < G(d) = c.$

Pairs of adjoint maps defined by relations:

Lemma (O.C., extracted from [Engendrement]). – Consider an arbitrary <u>relation</u> $R \hookrightarrow T \times S$ between a pair of <u>sets</u> or <u>classes</u> T and S. Then R defines a pair of adjoint order-preserving maps

$$(\mathcal{P}(T),\subseteq) \xrightarrow[\mathcal{G}_R]{\mathcal{F}_R} (\mathcal{P}(\mathcal{S}),\supseteq)$$

between the partially ordered sets or <u>classes</u>

of subsets or subclasses of S and T

$$\begin{aligned} \mathsf{F}_{\mathsf{R}}(J) &= \{ s \in S \mid (t,s) \in \mathsf{R}, \ \forall \ t \in J \} \text{ for any } J \subseteq \mathsf{T}, \\ \mathsf{G}_{\mathsf{R}}(I) &= \{ t \in \mathsf{T} \mid (t,s) \in \mathsf{R}, \ \forall \ s \in I \} \text{ for any } I \subseteq S. \end{aligned}$$

Proof:

• It is obvious on the definition that

$$\begin{array}{rcl} J_1 \subseteq J_2 & \Rightarrow & F_R(J_1) \supseteq F_R(J_2), \\ l_1 \supseteq l_2 & \Rightarrow & G_R(l_1) \subseteq G_R(l_2). \end{array}$$

• For $J \subseteq T$ and $I \subseteq S$, we have equivalences

$$\begin{array}{ccc} {\sf F}_{\sf R}(J)\supseteq {\sf I} & \Leftrightarrow & (t,s)\in {\sf R}, \ \forall \ t\in {\sf J}, \ \forall \ s\in {\sf I} \\ & \Leftrightarrow & {\sf J}\subseteq {\sf G}_{\sf R}({\sf I}). \end{array}$$

Induced equivalences and generation processes:

Corollary. – Consider a <u>relation</u> $R \hookrightarrow T \times S$ and the <u>induced pair</u> of <u>adjoint order-preserving maps</u>

$$(\mathcal{P}(\mathcal{T}),\subseteq) \xrightarrow[]{F_R} G_R (\mathcal{P}(\mathcal{S}),\supseteq).$$

Then:

(i) The maps F_R and G_R induce inverse bijections

$$\{J \subseteq T \mid G_R \circ F_R(J) = J\} \rightleftharpoons \{I \subseteq S \mid F_R \circ G_R(I) = I\}.$$

(ii) For any
$$J \subseteq T$$
 [resp. $I \subseteq S$], we have
 $G_R \circ F_R(J) = J$ [resp. $F_R \circ G_R(I) = I$]
if and only if there exists $I \subseteq S$ [resp. $J \subseteq T$] such that
 $J = G_R(I)$ [resp. $I = F_R(J)$].
(iii) For any $J \subseteq T$ [resp. $I \subseteq S$], we have
 $J \subseteq G_R \circ F_R(J)$ [resp. $F_R \circ G_R(I) \supseteq I$]
and $J \subseteq J' \Rightarrow G_R \circ F_R(J) \subseteq J'$ if $J' = G_R \circ F_R(J')$
[resp. $I' \supseteq I \Rightarrow I' \supseteq F_R \circ G_R(I)$ if $I' = F_R \circ G_R(I')$].

Remark: For any $J \subseteq T$ [resp. $I \subseteq S$], $G_R \circ F_R(J)$ [resp. $F_R \circ G_R(I)$] can be called the element of $\operatorname{Im}(G_R)$ [resp. of $\operatorname{Im}(F_R)$] generated by J [resp. I]. L Lafforgue

September 3-6, 2024 22/90

The duality of sieves and presheaves:

Definition. – Consider an essentially small category C, endowed with the Yoneda functor $v: \mathcal{C} \hookrightarrow \widehat{\mathcal{C}} = \{ category of presheaves \ \mathcal{C}^{op} \to Set \}.$ Let T be the class of pairs (X, C) consisting in $\begin{cases} X = object \text{ of } C, \\ C = sieve \text{ on } X = subpresheaf \text{ of } y(X). \end{cases}$ Let S be the class of presheaves P on C. We shall call "duality of sieves and presheaves" the relation $B \hookrightarrow T \times S$ consisting in pairs of elements $(C \hookrightarrow v(X), P)$ such that, for any morphism $X' \xrightarrow{x} X$ of C, the restriction map $P(X') = \operatorname{Hom}(y(X'), P) \longrightarrow \operatorname{Hom}(C \times_{y(X)} y(X'), P)$ is one-to-one. **Consequence:** This relation induces adjoint order-preserving maps

$$(\mathcal{P}(T),\subseteq) \xrightarrow[G_R]{F_R} (\mathcal{P}(S),\supseteq).$$

L. Lafforgue

Geometry and logic of subtoposes

The induced duality of topologies and subtoposes:

Theorem (extracted from [Engendrement]). -

- (i) A <u>subclass</u> J of T = {<u>sieves</u> C on objects X of C} is a fixed point of the <u>duality</u> of T with S = {<u>presheaves</u> P on C} if and only if J is a Grothendieck topology.
- (ii) A <u>subclass</u> I of S is a <u>fixed point</u> of the <u>duality</u> of T and S if and only if I is the class of objects of a subtopos E of C.

Corollary. -

- (i) The duality of sieves and presheaves on C induces a one-to-one correspondence between Grothendieck topologies J on C and subtoposes of C.
- (ii) For any family J of <u>sieves</u>, $G_R \circ F_R(\overline{J})$ is the <u>topology generated by J</u>.
- (iii) For any <u>class</u> I of <u>presheaves</u> on C,
 - $F_R \circ G_R(I)$ is the smallest subtopos of $\widehat{\mathcal{C}}$ which contains I.

Precise identification of fixed points:

Theorem. $-A \underline{class} J \subseteq T \text{ of } \underline{sieves} (C \hookrightarrow y(X)) \text{ on } C$ is a fixed point of the duality of T with Sif and only if it is a topology, i.e. verifies: (Max) For any object X of C, the maximal sieve y(X) belongs to J. (Stab) If $(C \hookrightarrow y(X))$ belongs to J, then for any morphism $x : X' \to X$, $(x^*C = C \times_{y(X)} y(X') \hookrightarrow y(X'))$ also belongs to J. (Trans) If $(C' \hookrightarrow y(X))$ belongs to J, a sieve $(C \hookrightarrow y(X))$ belongs to Jif, for any morphism $X' \xrightarrow{x} X$ belonging to C', $(x^*C = C \times_{y(X),x} y(X') \hookrightarrow y(X'))$ belongs to J.

Theorem. – A <u>class</u> $I \subseteq S$ of <u>presheaves</u> on C is a fixed point of the duality if and only if the full subcategory \mathcal{E} of \widehat{C} on <u>objects of I</u> is a "subtopos" in the sense that:

- (1) The embedding functor $\mathcal{E} \stackrel{j_*}{\hookrightarrow} \widehat{\mathcal{C}}$ has a left-adjoint j^* .
- (2) This left-adjoint $j^* : \widehat{\mathcal{C}} \to \mathcal{E}$ respects finite limits.
- (3) An object P of \widehat{C} is in \mathcal{E} , i.e. is an element of I, if and only if the canonical morphism $P \longrightarrow j_* \circ j^*P$ is an isomorphism.

Any class of presheaves defines a Grothendieck topology:

 Consider a class I of presheaves P on C. We need to verify that the class J of sieves C on objects X of C such that

for any morphism $X' \xrightarrow{x} X$ and any $P \in I$,

the restriction map $P(X') = \operatorname{Hom}(y(X'), P) \longrightarrow \operatorname{Hom}(C \times_{y(X)} y(X'), P)$ is <u>one-to-one</u>

is a topology.

Any intersection of topologies is a topology.

So it is enough to consider the case where I has a unique element P.

- The above condition is verified by maximal sieves C = y(X).
- By definition, it is stable under base change by any $X' \xrightarrow{x} X$.

• Consider sieves $C \hookrightarrow v(X)$ and $C' \hookrightarrow v(X)$ such that $C' \in J$ and $x^*C = C \times_{v(X)} y(X') \in J, \forall (X' \xrightarrow{x} X) \in C'$. As these conditions are respected by base change,

we are reduced to check that the map

 $P(X) = \operatorname{Hom}(y(X), P) \longrightarrow \operatorname{Hom}(C, P)$ is one-to-one.

For any morphism $C \xrightarrow{p} P$, the composite induced by any $(X' \xrightarrow{x} X) \in C'$ $x^*C = C \times_{V(X)} V(X') \longrightarrow C \longrightarrow P$

uniquely lifts to a morphism $y(X') \rightarrow P$. This defines a morphism $C' \rightarrow P$

which <u>lifts</u> to $y(X) \rightarrow P$. The composite $C \hookrightarrow y(X) \rightarrow P$ coincides with $C \xrightarrow{p} P$ as they coincide on $C \times_{V(X)} C'$.

L. Lafforgue

Any class of sieves defines a subtopos:

- If *J* is a <u>class of sieves</u> $C \hookrightarrow y(X)$ on objects *X* of *C*, the <u>class of presheaves</u> $F_R(J)$ associated with *J* is the same as the class of presheaves associated with $G_R \circ F_R(J)$.
- So we may suppose that *J* is a topology.
- Then $F_R(J)$ is the <u>class of J-sheaves</u> on C.

The full subcategory \widehat{C}_J on $F_R(J)$ is a subtopos

$$(\widehat{\mathcal{C}} \xrightarrow{j^*} \widehat{\mathcal{C}}_J, \widehat{\mathcal{C}}_J \xrightarrow{j_*} \widehat{\mathcal{C}}).$$

• Furthermore, in that case, *J* is the <u>class of sieves</u> $C \hookrightarrow y(X)$ such that $j^*C \longrightarrow j^* \circ y(X)$ is an isomorphism

or, equivalently, such that for any J-sheaf E, the restriction map

 $\operatorname{Hom}(y(X), E) \xrightarrow{\sim} \operatorname{Hom}(C, E)$ is <u>one-to-one</u>.

• This proves that, if J is a topology,

$$\overline{G_R} \circ F_R(J) = J.$$

• In other words, a subclass J of $T = \{\text{sieves } C \hookrightarrow y(X)\}$ is a fixed point of $G_R \circ F_R$ if and only if it is a topology.

Any subtopos is a fixed point of the duality relation:

• Consider a subtopos of $\widehat{\mathcal{C}}$ defined by a <u>class</u> *I* of presheaves

The duality of monomorphisms and objects in a topos:

Definition. -Consider a topos \mathcal{E} . Consider the class T of monomorphisms of \mathcal{E} $C \longrightarrow X$. Consider the class S of objects E of \mathcal{E} . We shall call "duality of monomorphisms and objects" in \mathcal{E} the relation $B \longrightarrow T \times S$ consisting in pairs of elements $(C \hookrightarrow X, E)$ such that, for any morphism $X' \to X$ of \mathcal{E} , the restriction map $\operatorname{Hom}(X', E) \longrightarrow \operatorname{Hom}(C \times_X X', E)$ is one-to-one.

This relation induces a pair of adjoint order-preserving maps

$$(\mathcal{P}(T),\subseteq) \xrightarrow{F_R} (\mathcal{P}(S),\supseteq).$$

The induced notion of topology on a topos:

Proposition. –

A <u>subclass</u> $J \subseteq T = \{ \underline{monomorphisms} \ C \hookrightarrow X \ of \ \mathcal{E} \}$ is a fixed point of the <u>duality</u> of T and $S = \{ \underline{objects} \ of \ \mathcal{E} \}$ if and only if it is a <u>topology</u> of \mathcal{E} in the sense that it <u>verifies the conditions</u>:

The induced notion of subtopos of a topos:

Proposition. -

A <u>subclass</u> $I \subseteq S = \{ objects E of \mathcal{E} \}$ is a fixed point of the duality of S and $T = \{ monomorphisms of \mathcal{E} \}$ if and only if the <u>full subcategory</u> \mathcal{E}_I of \mathcal{E} on <u>objects of I</u> is a <u>subtopos</u> in the sense that it verifies the conditions:

((1) The embedding functor $j_* : \mathcal{E}_I \hookrightarrow \mathcal{E}$ has a left adjoint j^* .

(2) This left adjoint functor $j^* : \mathcal{E} \to \mathcal{E}_I$ respects finite limits.

(3) An objet *E* of *E* belongs to *I* if and only if the canonical morphism $E \longrightarrow \overline{j_* \circ j^* E}$ is an isomorphism.

The induced duality of topologies and subtoposes:

We still consider the pair of adjoint order-preserving maps

$$(\mathcal{P}(T),\subseteq) \xrightarrow{F_R}_{G_R} (\mathcal{P}(S),\supseteq)$$

defined by the duality R of $T = \{ \text{monomorphisms of } \mathcal{E} \}$ and $S = \{ \text{objets of } \mathcal{E} \}.$

Corollary. -

(i) This duality induces a one-to-one correspondence between topologies on the topos \mathcal{E}

and <u>subtoposes</u> $(\mathcal{E} \xrightarrow{j^*} \mathcal{E}', \mathcal{E}' \xrightarrow{j_*} \mathcal{E})$ of \mathcal{E} .

- (ii) For any <u>subclass</u> J of monomorphisms C → X of E, G_R ∘ F_R(J) is the topology generated by J, i.e. the smallest topology which <u>contains</u> J.
- (iii) For any <u>subclass</u> I of <u>objects</u> E of \mathcal{E} , $F_R \circ G_R(I)$ is the <u>subtopos</u> generated by I, *i.e.* the <u>smallest subtopos</u> of \mathcal{E} which <u>contains</u> I.

The duality of sieves and monomorphisms of presheaves:

Definition. -

Consider an essentially small category C, endowed with $y : C \hookrightarrow \widehat{C}$. Consider the class $T = \{\underline{sieves \ } C \hookrightarrow y(X)\}$.

Consider the class S of monomorphisms of presheaves on $\ensuremath{\mathcal{C}}$

$$Q \longrightarrow P$$
.

We shall call "duality of sieves and subpresheaves" on C the relation

$$R \longrightarrow T \times S$$

consisting in pairs of elements

$$\overline{(C} \hookrightarrow y(X), \ Q \hookrightarrow P)$$

such that:

 $\begin{cases} \text{for any morphism } X' \xrightarrow{x} X \text{ of } \mathcal{C} \text{ and any element } p \in P(X'), \\ \text{one has } p \in Q(X') \\ \text{if } x'^*(p) \in Q(X'') , \ \forall (X'' \xrightarrow{x'} X') \in x^*\mathcal{C}. \end{cases}$

This relation induces a pair of adjoint order-preserving maps

$$(\mathcal{P}(T),\subseteq)\xrightarrow{F_R}_{G_R}(\mathcal{P}(S),\supseteq).$$

Topologies and closedness properties as fixed points:

Theorem (extracted from [Engendrement]). -

(i) A <u>subclass</u> $J \subseteq T = \{ \underline{sieves} \ C \hookrightarrow y(X) \}$ is a <u>fixed point</u> of the <u>duality</u> of T and $S = \{ \underline{subpresheaves} \ Q \hookrightarrow P \}$ if and only if J is a <u>topology</u> on C. (ii) A <u>subclass</u> $I \subseteq \overline{S}$ is a <u>fixed point</u> of the <u>duality</u> of T and S if and only if I is a "closedness property" in the sense that if verifies the following conditions:

(1) Isomorphisms
$$Q \xrightarrow{\sim} P$$
 belong to I.

- (2) Base change by any morphism $P' \to P$ of \widehat{C} <u>transforms subpresheaves $Q \to P$ which belong to I</u> into subpresheaves $Q \times_p P' \to P'$ which belong to I.
- (3) For any family of subpresheaves

 $Q_k \longrightarrow P, \ k \in K, \ which \ belong \ to \ l,$

their intersection

$$\bigcap_{k\in K} Q_k \longrightarrow P \text{ still } \underline{\text{belongs to } I}.$$

(4) If $\overline{Q} \hookrightarrow P$ denotes the <u>smallest element</u> of I <u>containing some</u> $Q \hookrightarrow P$, one has for <u>any morphism</u> $P' \to P$ of \widehat{C}

$$\overline{\mathbf{P}' \times_{P} Q} = P' \times_{P} \overline{Q}.$$

The induced duality of topologies and closedness properties:

Corollary. -

- (i) The "duality of sieves and subpresheaves" on C induces a <u>one-to-one correspondence</u> between <u>Grothendieck topologies</u> of C and closedness properties on subpresheaves on C.
- (ii) For any <u>class</u> J of <u>sieves</u> $C \hookrightarrow y(X)$ on <u>objects</u> X of C,

 $G_R \circ F_R(J) = \overline{J}$ is the topology generated by J,

i.e. the smallest topology containing J.

Furthermore, J and \overline{J} define the same "closedness property" of subpresheaves and induce the same operation of closure of subpresheaves

 $(\mathbf{Q} \hookrightarrow \mathbf{P}) \longmapsto (\overline{\mathbf{Q}} \hookrightarrow \mathbf{P})$

which, in particular, is respected by base change along any $P' \rightarrow P$, in the sense that $Q_{AB} = P'_{AB}$

$$\overline{Q\times_P P'} = \overline{Q}\times_P P'.$$

(iii) For any <u>class</u> I of subpresheaves $Q \hookrightarrow P$ on C,

 $F_R \circ G_R(I) = \overline{I}$ is the smallest "closure property" which contains I.

Furthermore, I and \bar{I} define the same topology on ${\cal C}$

$$G_R(I) = G_R(\overline{I})$$
.

Geometry and logic of subtoposes

Any class of subpresheaves defines a topology:

• Consider a <u>class</u> *I* of subpresheaves $Q \hookrightarrow P$. We need to verify that the <u>class</u> *J* of <u>sieves</u> $C \hookrightarrow y(X)$ such that \int for any morphism $X' \xrightarrow{x} X$ and any $p \in P(X')$

one has $p \in Q(X')$ if $x'^*(p) \in Q(X'')$, $\forall (X'' \xrightarrow{x'} X') \in x^*C$, is a topology.

• As any intersection of topologies is a topology,

it is enough to consider the case where I has a unique element $Q \hookrightarrow P$.

- The above condition is verified by <u>maximal sieves</u> C = y(X).
- By definition, this condition is stable under base change by any morphism $X' \xrightarrow{x} X$.
- Consider sieves $C \hookrightarrow y(X)$ and $C' \hookrightarrow y(X)$ such that

$$C' \in J$$
 and $x^*C \in J$, $\forall (X' \xrightarrow{x} X) \in C'$.

As these properties are stable under base change,

it is enough to prove that any element $p \in P(X)$

such that $x^*(p) \in Q(X'), \forall (X' \xrightarrow{x} X) \in C$, is in Q(X).

• For any $(X' \xrightarrow{x} X) \in C'$, we have $x^*C \in J$

and $x'^* \circ x^*(p) \in Q(X''), \forall (X'' \xrightarrow{x'} X') \in x^*C$, which implies that $x^*(p) \in Q(X')$. As $C' \in J$, we conclude that $p \in Q(X)$. This means that $C \in J$.

• So J verifies (Trans) in addition to (Max) and (Stab).

Any class of sieves defines a "closedness property":

• Consider a class J of sieves and its image

$$I = F_R(J) = \left\{ \begin{array}{l} Q \hookrightarrow P \\ \forall (C \hookrightarrow y(X)) \in J, \ \forall (X' \xrightarrow{x} X), \\ \forall p \in P(X'), \ \text{one has } p \in Q(X') \\ \text{if } x'^*(p) \in Q(X''), \ \forall (X'' \xrightarrow{x'} X') \in x^*C \end{array} \right\}$$

It is obvious from this definition that

- $\begin{cases} & \text{all isomorphisms } Q \xrightarrow{\sim} P \text{ belong to } I, \\ & \text{the class } I \text{ is respected by all base changes } P' \rightarrow P, \\ & \text{it is also stable under intersections of elements } Q_k \hookrightarrow P, k \in K. \end{cases}$
- We already know that $G_R \circ F_R(J) = \overline{J}$ is a topology and $I = F_R(\overline{J})$.

• This implies that for any subpresheaf $Q \hookrightarrow \overline{P}$ the smallest element of I which contains Q

$$\overline{\mathcal{Q}} \hookrightarrow \mathcal{P}$$

is characterized by the following formula at any object X of C

$$\overline{\mathcal{Q}}(X) = \{ oldsymbol{p} \in \mathcal{P}(X) \mid \exists \ \mathcal{C} \in \overline{J}(X) \ , \ x^*(oldsymbol{p}) \in \mathcal{Q}(X') \ , \ orall \ (X' \stackrel{x}{\longrightarrow} X) \in \mathcal{C} \}.$$

• This formula implies that, for any morphism $P' \rightarrow P$,

 $\overline{Q \times_P P'} = \overline{Q} \times_P P'$ as subpresheaves of P'.

• We <u>conclude</u> that $I = F_R(J) = F_R(\overline{J})$ is a "closedness property".

Topologies and "closedness properties" as fixed points:

Consider a topology J and the associated "closedness property"

$$I = F_R(J).$$

It defines a "closure operation" on subpresheaves

$$(Q \hookrightarrow P) \longmapsto (\overline{Q} \hookrightarrow P)$$

where, for any object X of C,

 $\overline{Q}(X) = \{ p \in P(X) \mid \exists C \in \overline{J}(X), x^*(p) \in Q(X'), \forall (X' \xrightarrow{x} X) \in C \}.$ If $C \hookrightarrow V(X)$ is a sieve belonging to $G_B \circ F_B(J) = G_B(I)$. one has for any subpresheaf $Q \hookrightarrow P$ and any morphism $y(X) \to P$ the implication $C \subseteq Q \times_P y(X) \Rightarrow Q \times_P v(X) = v(X)$. This means that $\overline{C} = y(X)$ or, equivalently, $C \in J$. We conclude that $J = G_B \circ F_B(J)$ is a fixed point. • Consider a "closedness property" I and the associated topology $J = G_R(I)$. A sieve $C \hookrightarrow y(X)$ belongs to J if and only if, for any morphism $X' \to X$ and any $Q \hookrightarrow y(\overline{X'})$ which belongs to I, one has the implication $\overline{x^*C \subseteq Q} \Rightarrow Q = \gamma(X').$ This means that $C \in J$ if and only if $\overline{C} = y(X)$. We conclude that $I = F_B \circ G_B(I)$ is a fixed point.

III. Generation of topologies and provability:

• A closed formula for the generation of topologies

- The dualities of sieves with presheaves and with subpresheaves.
- <u>Sieves</u> and closedness properties of subpresheaves.
- A generation formula based on closure operations.
- Application to joins of topologies.
- Application to finite products of toposes.

• A generation formula in terms of multicoverings

- The notion of multicovering of an object.
- Explicitation of closure operations of subpresheaves.
- An explicit formula for generated topologies.

Topological interpretations of provability problems

- Topological interpretations of geometric <u>axioms</u>.
- Reduction to atomic and Horn formulas.
- Constructive interpretations of <u>axioms</u> in terms of covering sieves.
- The problem of presentations of classifying toposes.
- The case of presheaf type theories.
- The case of cartesian theories.
- The case of theories without functions symbols and without axioms.

Reminder on the duality of sieves and presheaves:

• For any essentially small category C, there is a duality

between $T = \{(C \hookrightarrow y(X)) \mid X = \text{object of } \mathcal{C}, C \hookrightarrow y(X) \text{ in } \widehat{\mathcal{C}}\}$ and $S = \{\text{presheaves } (P : \mathcal{C}^{\text{op}} \to \text{Set}) = \text{objects of } \widehat{\mathcal{C}}\}$ defined by the <u>relation</u> $R \hookrightarrow T \times S$ consisting in pairs $(C \hookrightarrow y(X), P)$ such that

 $\forall (X' \xrightarrow{x} X), \ \mathcal{P}(X') = \operatorname{Hom}(\mathcal{Y}(X'), \mathcal{P}) \longrightarrow \operatorname{Hom}(x^*\mathcal{C}, \mathcal{P}) \text{ is one-to-one.}$

This duality induces a pair of adjoint order preserving maps

$$\mathcal{P}(T) \xrightarrow[G_R]{F_R} \mathcal{P}(S)$$

such that

- for any $J \subseteq T$, $F_R(J)$ is a subtopos of $\widehat{\mathcal{C}}$ and $G_R \circ F_R(J)$ is the topology generated by J,
- for any $I \subseteq S$, $G_R(I)$ is a topology on Cand $F_R \circ G_R(I)$ is the subtopos generated by *I*.
- This induces a one-to-one correspondence

$$\left\{ \frac{\text{topologies}}{\text{on } \mathcal{C}} \right\} \quad \xrightarrow[\widehat{G_R}]{F_R} \quad \left\{ \frac{\text{subtoposes}}{\text{of } \widehat{\mathcal{C}}} \right\}$$

Reminder on the duality of sieves and subpresheaves:

• For any essentially small category C, there is a duality between $T = \{(C \hookrightarrow y(X)) \mid X = \text{object of } \overline{C}, \overline{C} = \text{sieve on } X\}$ and $S' = \{\text{monomorphisms } (Q \hookrightarrow P) \text{ in } \widehat{C}\}$ defined by the <u>relation</u> $R' \hookrightarrow T \times S'$ consisting in <u>pairs</u> $(C \hookrightarrow y(X), Q \hookrightarrow P)$ such that

 $\forall (X' \xrightarrow{x} X), \forall p \in P(X'), [x'^*(p) \in Q(X''), \forall (X'' \xrightarrow{x'} X') \in x^*C] \Rightarrow p \in Q(X').$

This duality induces a pair of adjoint order preserving maps

$$\mathcal{P}(T) \xrightarrow[\mathcal{G}_{R'}]{F_{R'}} \mathcal{P}(S')$$

such that

- for any $J \subseteq T$, $F_{R'}(J)$ is a closedness property and $G_{R'} \circ F_{R'}(J)$ is the topology generated by J,
- for any $I \subseteq S'$, $G_{R'}(I)$ is a topology on Cand $F_{R'} \circ G_{R'}(I)$ is the closedness property generated by *I*.
- This induces a one-to-one correspondence

$$\left\{ \frac{\text{topologies}}{\text{on } \mathcal{C}} \right\} \xrightarrow[G_{R'}]{F_{\mathcal{R}'}} \left\{ \frac{\text{closedness properties of}}{\text{subpresheaves } Q \hookrightarrow P \right\}$$

Reminder on topologies and closedness properties:

Definition. – Any $J \subseteq T = \{(C \hookrightarrow y(X)) \mid X = object of C, C = sieve on X\}$ is a topology if and only if

- J contains <u>maximal sieves</u> $J = y(X) \stackrel{=}{\hookrightarrow} y(X)$,
- J is stable by pull-backs along morphisms $X' \xrightarrow{x} X$,
- a sieve $C \hookrightarrow y(X)$ belongs to J if there exists $(C' \hookrightarrow y(X)) \in J$ such that $(x^*C \hookrightarrow y(X')) \in J, \forall (X' \xrightarrow{x} X) \in C'$.

Definition. -

A property of subpresheaves $I \subseteq S' = \{(Q \hookrightarrow P) = monomorphism \text{ of } \widehat{C}\}$ is a "closedness property" if and only if:

- isomorphisms $Q \xrightarrow{\sim} P$ belong to I,
- I is stable by pull-backs along morphisms $P' \to P$ of \widehat{C} ,
- I is stable under intersections in the sense that

$$(\mathbf{Q}_k \hookrightarrow \mathbf{P}) \in \mathbf{I}, \ \forall k \in \mathbf{K} \Rightarrow \left(\bigcap_{k \in \mathbf{K}} \mathbf{Q}_k \hookrightarrow \mathbf{P}\right) \in \mathbf{I},$$

42/90

• *if, for any* $Q \hookrightarrow P$ *in* \widehat{C} , $\overline{Q} \hookrightarrow P$ *denotes the* <u>smallest element</u> of I containing Q, we have for any morphism $P' \to P$ $\overline{P' \times_P Q} = P' \times_P \overline{Q}$. L Lafforgue Geometry and logic of subtoposes September 3-6, 2024

Sieves and covering presieves:

• A sieve on an object X of C is a subobject

$$\begin{array}{c} C & \longleftrightarrow & y(X) \\ \text{or, equivalently, a collection of morphisms} \\ \underline{\text{such that, for any morphism } X'' \xrightarrow{x'} X', \\ (X' \xrightarrow{x} X) \in C \Rightarrow (x \circ x' : X'' \to X' \to X) \in C. \end{array}$$

$$\begin{array}{c} \text{Definition.} -A \text{ presieve on an object } X \text{ of } \mathcal{C} \text{ is a family of morphisms} \end{array}$$

$$(\overline{x_i:X_i}\longrightarrow X)_{i\in I}$$
.

Remarks:

Any such presieve generates a sieve which is

 $\{X' \xrightarrow{x} X \mid x \text{ factorizes though } at \text{ least some } X_i \to X, i \in I\}.$

Any <u>sieve</u> is generated by presieves.

Definition. -

Let $J \subseteq T = \{(C \hookrightarrow y(X)) \mid \text{sieves } C \text{ on objects } X \text{ of } C\}$ be a topology

or, more generally, a family of sieves stable under pull-backs along all $X' \xrightarrow{x} X$.

Then a presieve $(X_i \xrightarrow{x_i} X)_{i \in I}$ is called *J*-covering if and only if its generated sieve contains some $(C \hookrightarrow y(X)) \in J$.

43/90

Stabilisation of families of sieves:

Definition. – A family of sieves $J \subseteq T = \{C \hookrightarrow y(X)\}$ will be called "stable" if it is respected by pull-backs along morphisms $X' \xrightarrow{x} X$ of C.

Lemma. – Any family of sieves $J \subseteq T = \{C \hookrightarrow y(X)\}$ generates a stable family which is

 $J_{\mathcal{S}} = \{ \mathcal{C}' \hookrightarrow \mathcal{Y}(X') \mid \exists (X' \xrightarrow{x} X), \exists (\mathcal{C} \hookrightarrow \mathcal{Y}(X)) \in J, \ \mathcal{C}' = x^* \mathcal{C} \}.$

Remarks:

- One has the <u>inclusions</u> $J \subseteq J_s \subseteq \overline{J}$ = topology generated by J and they define
 - the same subtopos $F_R(J) = F_R(J_s) = F_R(\overline{J})$,
 - the same closedness property $F_{R'}(J) = F_{R'}(J_s) = F_{R'}(\overline{J})$.
- A subpresheaf $Q \hookrightarrow P$ is \overline{J} -closed, or J_s -closed, or \overline{J} -closed if and only if, for any $p \in P(X)$ and any $(C \hookrightarrow y(X)) \in J_s$, $x^*(p) \in Q(X'), \ \forall (X' \xrightarrow{x} X) \in C \Rightarrow p \in Q(X).$
- The family J induces a notion of J_s -covering presieves.

A closed formula for generated topologies:

Theorem (O.C., L.L., see [Engendrement] improving a formula of [TST]). – Let $J \subseteq T = \{C \hookrightarrow y(X)\}$ be a <u>class of sieves</u> on objects X of C. Let J_s be the <u>stabilisation</u> of J

 $J_{s} = \{C' \hookrightarrow y(X') \mid \exists (X' \xrightarrow{x} X), \exists (C \hookrightarrow y(X)) \in J, C' = x^{*}C\}.$ Let \overline{J} be the topology on \mathcal{C} generated by J or J_{s} . Then a sieve on an object X of $\mathcal{C}, C \hookrightarrow y(X)$ belongs to \overline{J} if and only if any sieve $C' \hookrightarrow y(X)$ such that

- C' <u>contains</u> C,
- *C'* is J_s -<u>closed</u> in the sense that an arbitrary morphism $x : X' \longrightarrow X$ belongs to *C'* if the sieve on *X'*

$$[X'' \xrightarrow{x'} X' \mid (x \circ x' : X'' \to X) \in C'\}$$

contains an element of J_s ,

is the <u>maximal sieve</u> $y(X) \stackrel{=}{\hookrightarrow} y(X)$.

Proof: We already know that *J*, *J*_s and *J* define the same "closedness property" on subpresheaves $Q \hookrightarrow P$ and so the same "closure operation" $(Q \hookrightarrow P) \mapsto (\overline{Q} \hookrightarrow P)$. The theorem statement means that $C \hookrightarrow y(X)$ belongs to \overline{J} if and only if $\overline{C} = y(X)$.

Application to joins of topologies:

Corollary. – Let $(J_k)_{k \in K}$ be a family of topologies on C. Let $J = \bigvee_{\substack{k \in K}} J_k$ be the smallest topology which <u>contains</u> all J_k 's, $k \in K$. Then a sieve on a object X of C $C \hookrightarrow y(X)$ belongs to J if and only if any sieve $C' \hookrightarrow y(X)$ such that

- $\int \bullet C' \underline{contains} C,$
 - C' is J_k -<u>closed</u> for any $k \in K$,

is the <u>maximal sieve</u> $y(X) \stackrel{=}{\hookrightarrow} y(X)$.

Proof:

- Indeed, the class J_s of sieves C → y(X) defined as the <u>union of the classes</u> J_k, k ∈ K, is <u>stable under pull-backs</u> along morphisms X' → X of C. By definition, it generates the topology J.
- To conclude, we observe that a sieve $C' \longrightarrow y(X)$ is J_s -closed if and only if it is J_k -closed for any $k \in K$.

Application to the construction of finite products of toposes:

Theorem. – Consider topologies J_1, \dots, J_n on essentially small categories C_1, \dots, C_n . Consider the product category $\mathcal{C} = \mathcal{C}_1 \times \cdots \times \mathcal{C}_n$ endowed with the induced topologies J_1, \dots, J_n . Then the product topos in the 2-category of toposes $\mathcal{E} = (\mathcal{C}_1)_{\mathcal{A}} \times \cdots \times (\mathcal{C}_n)_{\mathcal{A}_n}$ can be constructed as the topos of sheaves on the product category $\mathcal{C} = \mathcal{C}_1 \times \cdots \times \mathcal{C}_n$ endowed with the topology J for wich a sieve $C \hookrightarrow \overline{y(X_1 \times \cdots \times X_n)}$ belongs to J if and only if any sieve $C' \hookrightarrow y(X_1 \times \cdots \times X_n)$ such that C' contains C, • C' is J_k -<u>closed</u> for any $k \in K$, is the maximal sieve $y(X_1 \times \cdots \times X_n) \stackrel{=}{\hookrightarrow} y(X_1 \times \cdots \times X_n)$.

This theorem is a consequence of the previous theorem and:

Proposition. – Let C and D be essentially small categories. Then the presheaf topos $\widehat{C \times D}$ is a product of the presheaf toposes on C and D, $\widehat{C} \times \widehat{D}$.

L. Lafforgue

Geometry and logic of subtoposes

Products of toposes and products of topological spaces:

- To any topological space X are associated
 - \int the category C_X of open subsets of X,
 - the topology J_X on $\overline{\mathcal{C}_X}$ defined by the usual notion of covering,

- the topos
$$\mathcal{E}_X = (\mathcal{C}_X)_{J_X}$$
 of sheaves on X.

This defines a <u>functor</u> {category of topological spaces} \longrightarrow {category of toposes}.

• In particular, any topological spaces X_1, \dots, X_n define a topos morphism

 $\mathcal{E}_{X_1 \times \cdots \times X_n} \longrightarrow \mathcal{E}_{X_1} \times \cdots \times \mathcal{E}_{X_n}.$

Proposition. –

For the natural morphism $\mathcal{E}_{X_1 \times \cdots \times X_n} \longrightarrow \mathcal{E}_{X_1} \times \cdots \times \mathcal{E}_{X_n}$ to be an isomorphism, it <u>suffices</u> that all factors X_i 's, except possibly one, are locally compact.

Remark: If $\mathcal{E}_{X_1 \times \cdots \times X_n} \longrightarrow \mathcal{E}_{X_1} \times \cdots \times \mathcal{E}_{X_n}$ is an isomorphism of toposes, the topos $\mathcal{E}_{X_1 \times \cdots \times X_n}$ of sheaves on $X_1 \times \cdots \times X_n$ can be constructed as the topos of sheaves on the product category $\mathcal{C}_{X_1} \times \cdots \times \mathcal{C}_{X_n}$ endowed with the topology $J = J_{X_1} \vee \cdots \vee J_{X_n}$ for which a sieve $C \longrightarrow y(U_1 \times \cdots \times U_n)$ belongs to Jif and only if any sieve $C' \hookrightarrow y(U_1 \times \cdots \times U_n)$ such that

- $\int \bullet C' \underline{\text{contains}} C,$
- C' is J_{X_i} -<u>closed</u> for any $i, 1 \le i \le n$,

is the maximal sieve on $U_1 \times \cdots \times U_n$.

Multicoverings:

- Let J be a class of sieves $C \hookrightarrow y(X)$ of objects X of C. Let J_s be the "stabilisation" of J.
- A J_s -covering of an object X is a presieve $(x_i : X_i \longrightarrow X)_{i \in I}$ whose generated sieve is maximal or contains an element of J_s .

Definition. – A J_s -multicovering of an object X of C is a sequence $\cdots \longrightarrow \mathfrak{X}_{n} \xrightarrow{f_{n}} \mathfrak{X}_{n-1} \longrightarrow \cdots \xrightarrow{f_{2}} \mathfrak{X}_{1} \xrightarrow{f_{1}} \mathfrak{X}_{0}$ where

- each $\mathfrak{X}_k, k \in \mathbb{N}$, is a set of morphisms of \mathcal{C} .
- all morphisms in \mathfrak{X}_0 have target X and make up a J_s -covering of X,
- for any n > 1 and $x_n \in X_n$, the target of x_n is the source of $f_n(x_n) \in \mathfrak{X}_{n-1}$,
- for any n > 1 and $x_{n-1} \in X_{n-1}$, the fiber $\{x_n \in \mathfrak{X}_n \mid f_n(x_n) = x_{n-1}\}$

is empty or makes up a J_s -covering of the source of x_{n-1} ,

• there is no infinite sequence $x_n \in X_n$, $n \in \mathbb{N}$. such that $f_n(x_n) = x_{n-1}$, $\forall n > 1$.

Explicitation of the operation of closure of subpresheaves:

- Let J be a <u>class of sieves</u> on C, J_s its "<u>stabilisation</u>" and J the generated topology.
- We know that *J*, *J_s* and *J* define the same "closedness property" of subpresheaves and the same operation of closure (*Q* → *P*) → (*Q* → *P*).

Theorem (O.C., L.L., to appear in [Engendrement]). – Consider a subpresheaf $Q \hookrightarrow P$ of a presheaf P on C.

Let $\overline{Q} \hookrightarrow P$ be its <u>closure</u> with respect to J, J_s or \overline{J} .

Then an element $p \in P(X)$ belongs to $\overline{Q}(X)$

if and only if there exists a J_s -multicovering of X

$$\cdots \longrightarrow \mathfrak{X}_n \xrightarrow{f_n} \mathfrak{X}_{n-1} \longrightarrow \cdots \xrightarrow{f_2} \mathfrak{X}_1 \xrightarrow{f_1} \mathfrak{X}_0$$

such that, for any $n \in \mathbb{N}$ and $x_n \in X_n$, we have

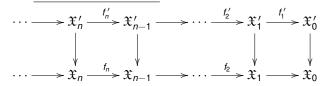
- <u>either</u> x_n belongs to the image of $\mathfrak{X}_{n+1} \xrightarrow{f_{n+1}} \mathfrak{X}_n$,
- <u>or</u> the empty sieve on the source of x_n is J_s -covering,
- <u>or</u>, denoting $x_{n-1} = f_n(x_n)$, $x_{n-2} = f_{n-1}(x_{n-1})$, \cdots , $x_0 = f_1(x_1)$, the composite $x_0 \circ x_1 \circ \cdots \circ x_n : X_n \longrightarrow X$ verifies the property $(x_0 \circ x_1 \circ \cdots \circ x_n)^*(p) \in Q(X_n)$.

Verification of stability under pull-backs:

- Consider as before *J*, *J_s* and *J*.
 Consider a subpresheaf *Q* → *P*.
- For any object X, let Q(X) ⊆ P(X) be the subset of elements of P which, as in the theorem, can be sent into Q → P by some J_s-multicovering.
- We first have to check that any $\underline{\text{morphism } x: X' \to X}$ <u>sends</u> $\widetilde{Q}(X) \subseteq P(X)$ <u>into</u> $\widetilde{Q}(X') \subseteq P(X')$.
- Given $p \in \widetilde{Q}(X)$ and an adapted J_s -multicovering of X

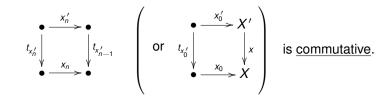
$$\cdots \longrightarrow \mathfrak{X}_n \xrightarrow{f_n} \mathfrak{X}_{n-1} \longrightarrow \cdots \xrightarrow{f_2} \mathfrak{X}_1 \xrightarrow{f_1} \mathfrak{X}_0,$$

it is enough to construct a J_s -multicovering of X' as part of a commutative diagram



such that

- $\begin{pmatrix} \text{ for any } x'_n \in \mathfrak{X}'_n \text{ of image } x_n \in \mathfrak{X}_n, \text{ there is an } \underbrace{\text{associated morphism}}_{\text{source } (x'_n)} \underbrace{\xrightarrow{t_{x'_n}}}_{\text{source } (x_n)} \text{ source } (x_n) \quad \\ \end{cases}$
 - − for any $x'_n \in \mathfrak{X}'_n$ and its images $x_n \in \mathfrak{X}_n$, $x'_{n-1} \in \mathfrak{X}'_{n-1}$, $x_{n-1} \in \mathfrak{X}_{n-1}$, the square



Verification of the closedness property:

• We have to verify that the subpresheaf

 $\begin{array}{ccc} \widetilde{Q} & \longrightarrow P & \text{is } \underline{closed}. \\ \bullet & \text{Consider an } \underline{element} \ p \in P(X) \\ \text{such that } \underline{there \ exists} \ a \ J_s \text{-covering} \ (X_k \xrightarrow{x_k} X)_{k \in K} \\ \text{verifying} & x_k^*(p) \in \widetilde{Q}(X_k), \ \forall \ k \in K. \end{array}$

• By definition of Q, each X_k has a J_s -multicovering

$$\cdots \longrightarrow \mathfrak{X}_{n}^{k} \xrightarrow{f_{n}^{k}} \mathfrak{X}_{n-1}^{k} \longrightarrow \cdots \longrightarrow \mathfrak{X}_{1}^{k} \xrightarrow{f_{n}^{k}} \mathfrak{X}_{0}^{k}$$

which allows to send $x_k^*(p)$ into $Q \hookrightarrow P$.

• Then the formulas

$$\mathfrak{X}_{0} = \left\{ (X_{k} \xrightarrow{x_{k}} X) \mid k \in K \right\}$$

and

$$\mathfrak{X}_n = \coprod_{k \in K} \mathfrak{X}_{n-1}^k \quad \text{for} \quad n \ge 1$$

define a J_s -multicovering of Xwhich sends $p \in P(X)$ into $Q \hookrightarrow P$.

• This means that $p \in \widetilde{Q}(X)$.

Verification of minimality:

- Consider a subpresheaf Q' → P which is <u>closed</u> with respect to J, J_s or J and which <u>contains</u> Q → P. We have to <u>check</u> that Q' <u>contains</u> Q → P.
- Consider an element $p \in \widetilde{Q}(X)$ and a J_s -multicovering of X

$$\cdots \longrightarrow \mathfrak{X}_n \xrightarrow{f_n} \mathfrak{X}_{n-1} \longrightarrow \cdots \longrightarrow \mathfrak{X}_1 \xrightarrow{f_1} \mathfrak{X}_0$$
which sends *p* into *Q*.

- For any $n \ge 0$, let $\mathfrak{X}'_n \subseteq \mathfrak{X}_n$ be the subset of elements x_n whose associated branch $x_n, f_n(x_n) = x_{n-1}, \cdots, f_1(x_1) = x_0$ verifies $(x_0 \circ x_1 \circ \cdots \circ x_n)^*(p) \notin Q'(X)$.
- We have to prove that all \mathfrak{X}'_n , $n \ge 0$, are empty.
- If they were not all empty, there would exist

$$n \ge 0 \quad \text{and} \quad x_n \in \mathfrak{X}_n \quad \text{such that} \\ \{x_{n+1} \in \mathfrak{X}'_{n+1} \mid f_{n+1}(x_{n+1}) = x_n\} = \emptyset.$$

This would yield a contradiction as

$$\begin{cases} - & \underline{\text{either}} \left\{ x_{n+1} \in \mathfrak{X}_{n+1} \mid f_{n+1}(x_{n+1}) = x_n \right\} \text{ is } J_s \text{-covering,} \\ - & \underline{\text{or}} \left(x_0 \circ x_1 \circ \cdots \circ x_n \right)^* (p) \in Q(X). \end{cases}$$

An explicit formula for generated topologies:

• Let *J* be a <u>class of sieves</u> $C \hookrightarrow y(X)$ on *C*, *J*_s be its "<u>stabilisation</u>" and \overline{J} their generated topology.

Corollary. – A sieve on an object X

$$C \hookrightarrow y(X)$$

belongs to the generated topology \overline{J} if and only if there exists a J_s -multicovering of X

$$\cdots \longrightarrow \mathfrak{X}_n \xrightarrow{f_n} \mathfrak{X}_{n-1} \longrightarrow \cdots \longrightarrow \mathfrak{X}_1 \xrightarrow{f_1} \mathfrak{X}_0$$

such that, for any $n \in \mathbb{N}$ and $x_n \in \mathfrak{X}_n$, we have

- <u>either</u> x_n belongs to the image of $\mathfrak{X}_{n+1} \xrightarrow{f_{n+1}} \mathfrak{X}_n$,
- <u>or</u> the empty sieve on the source of x_n is J_s -covering,
- or, denoting

$$f_n(x_n) = x_{n-1}, \cdots, f_1(x_1) = x_0,$$

the composite

$$x_0 \circ x_1 \circ \cdots \circ x_n : X_n \longrightarrow X$$

is an element of C.

Topological interpretations of geometric axioms:

- Consider a geometric first-order theory T in a vocabulary (or "signature") Σ consisting in

 - $\begin{cases} & \overline{\text{object names (or "sorts") } A_i, \\ & \overline{\text{morphism names (or "function symbols") } f : A_1 \cdots A_n \to A, \\ & \overline{\text{subobject names (or "relation symbols") } R \rightarrowtail A_1 \cdots A_n. \end{cases}$

Reminder. – For any model M of such a geometric theory \mathbb{T} in a topos \mathcal{E} , corresponding to a topos morphism $\mathcal{E} \xrightarrow{m} \mathcal{E}_{\mathbb{T}}$, we have:

(i) Any sort A_i interprets as an object MA_i of \mathcal{E} .

(ii) Any geometric formula $\varphi(x_1^{A_1} \cdots x_n^{A_n})$ of Σ interprets as a subobject $M\varphi(x_1^{A_1}\cdots x_n^{A_n}) \longrightarrow MA_1 \times \cdots \times MA_n.$

(iii) Any implication (or "sequent") $\varphi(x_1^{A_1}, \dots, x_n^{A_n}) \vdash \psi(x_1^{A_1}, \dots, x_n^{A_n})$ interprets as an embedding of subobjects of $MA_1 \times \cdots \times MA_n$ $M(\phi \wedge \psi)(x_1^{A_1} \cdots x_n^{A_n}) \longrightarrow M\phi(x_1^{A_1} \cdots x_n^{A_n})$ which is an epimorphism (and so an isomorphism) if and only if M verifies $\varphi \vdash \psi$.

Reduction from general geometric formulas to Horn formulas:

Definition. -

Let Σ be a first-order vocabulary (or "signature").

(i) A geometric formula φ(x) of Σ is called "atomic" if it is deduced from relation or equality formulas R(x₁^{A₁},...,x_n^{A_n}) or x₁^A = x₂^A by replacing finitely many times variables by morphism formulas x^A = f(x₁^{B₁},...,x_m^{B_m}) for f : B₁...B_m → A in Σ.
(ii) A geometric formula φ(x) of Σ is called <u>Horn</u> if it is a finite conjunction of atomic formulas φ_i(x)

 $\varphi(\vec{x}) = \varphi_1(\vec{x}) \wedge \cdots \wedge \varphi_k(\vec{x}).$

Lemma. –

Any geometric formula $\varphi(\vec{x})$ can be <u>written</u> in equivalent form

$$\rho(\vec{x}) = \bigvee_{i \in I} \exists (\vec{x}_i) \varphi_i(\vec{x}_i, \vec{x})$$

where each $\varphi_i(\vec{x}_i, \vec{x})$ is a <u>Horn formula</u>.

Reduction to topological interpretations of Horn formulas:

Corollary. -

Let \mathbb{T} be a geometric first-order theory in a vocabulary Σ . Then it is possible to associate to any geometric sequent of $\Sigma = \varphi(\vec{x}) \vdash \psi(\vec{x})$

a double family $\mathfrak{X}_{\vec{x},\phi,\psi}$ consisting in

such that, for any model M of \mathbb{T} in a topos \mathcal{E} , the implication $\varphi(\vec{x}) \vdash \psi(\vec{x})$ is verified by M if and only if

for any index
$$i \in I$$
, the family of projections in \mathcal{E}
$$\frac{M(\varphi_{i,j}(\vec{x}_i, \vec{x}_{i,j}) \land \varphi_i(\vec{x}_i)) \longrightarrow M\varphi_i(\vec{x}_i)}{\text{is globally epimorphic.}}$$

Concrete reduction of geometric axioms to topology generation:

Proposition. – Let \mathbb{T} be a geometric first-order theory in a vocabulary Σ . Suppose that the classifying topos $\mathcal{E}_{\mathbb{T}}$ of \mathbb{T} is presented as

 $\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}_J$ through $\ell : \mathcal{C} \to \mathcal{E}_{\mathbb{T}}$

where

- C has arbitrary finite limits, i.e. finite products and fiber products,
- any "sort" A of Σ interprets as an object UA of C,
- any "function symbol" $f : \overline{A_1} \cdots A_n \to \overline{A}$ of Σ interprets as a morphism of C $Uf : UA_1 \times \cdots \times U\overline{A_n} \to UA$,
- any "relation symbol" $R \rightarrow A_1 \cdots A_n$ of Σ interprets as a subobject of C $UR \rightarrow UA_1 \times \cdots \times UA_n$,

so that any <u>Horn formula</u> $\varphi(x_1^{A_1} \cdots x_n^{A_n})$ of Σ interprets as a subobject of \mathcal{C} $U\varphi \hookrightarrow UA_1 \times \cdots \times UA_n$.

Then a geometric sequent $\varphi(\vec{x}) \vdash \psi(\vec{x})$ of Σ is provable

in a quotient theory \mathbb{T}' of \mathbb{T} corresponding to a topology $J' \supseteq J$ if and only if the associate families of projection morphisms

 $(U(\varphi_{i,j}(\vec{x}_i, \vec{x}_{i,j}) \land \varphi_i(\vec{x}_i)) \longrightarrow U\varphi_i(\vec{x}_i))_{j \in I_i}, i \in I,$ defined by the double family of Horn formulas $\mathfrak{X}_{\vec{x},\varphi,\psi}$ are J'-coverings.

The problem of presentations of classifying toposes:

Problem. – Given a geometric first-order theory \mathbb{T} in a vocabulary Σ , how to present its classifying topos in terms of a site (\mathcal{C}, J)

$$\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}_J$$

such that

- C has arbitrary <u>finite limits</u>, elements of the vocabulary Σ interpret in C.

Hints:

One may take

 $\int \mathcal{C} = \mathcal{C}_{\mathbb{T}}$ (syntactic category of \mathbb{T}),

$$J = J_{\mathbb{T}}$$
 (syntactic topology on $\mathcal{C}_{\mathbb{T}}$).

- More generally, one may write
 - $\mathbb{T} =$ quotient of a theory \mathbb{T}_0 in the same vocabulary Σ , and take

$$\mathcal{C} = \mathcal{C}_{\mathbb{T}_0}$$
 (syntactic category of \mathbb{T}_0),

J =topology on $C_{\mathbb{T}_0}$ generated by $J_{\mathbb{T}_0}$ and the covering families associated with the <u>axioms</u> of \mathbb{T} .

- Even more generally, one can first replace T by
 - \mathbb{T}' = geometric first-order theory in a vocabulary Σ'

which is "syntactically equivalent" in the sense that $C_{\mathbb{T}} \cong C_{\mathbb{T}'}$.

The case of presheaf type theories:

Definition. – A geometric first-order theory \mathbb{T} in a vocabulary Σ is called "presheaf type" if its classifying topos is a topos of presheaves $\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}$ on some category \mathcal{C} .

Examples:

- Any theory T consisting in a <u>vocabulary</u> Σ <u>without axioms</u> is presheaf type.
- More generally, any "cartesian theory" is presheaf type.
- In particular, any "algebraic" or "Horn" theory is presheaf type.

Theorem (O.C., see [TST]). – For any presheaf type theory T, one has

$$\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}$$

 $\textit{for} \qquad \mathcal{C} = \mathcal{C}_{\mathbb{T}}^{ir} \cong \left(\mathbb{T}\text{-mod} \left(Set\right)\right)_{ft}^{op} \quad \textit{where}$

- C^{ir}_T is the full subcategory of C_T on <u>objects</u> which are "<u>irreducible</u>" in the sense that their only J_T-covering sieve is the <u>maximal sieve</u>.
- T-mod (Set)_{fp} is the <u>full subcategory</u> of T-mod (Set) on <u>set-valued models</u> of T which are "finitely presentable" by geometric formulas.

L. Lafforgue

61/90

The case of cartesian theories:

Theorem. –

If \mathbb{T} is a "cartesian" theory, it is presheaf type and one can write

$$\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}$$

with $\mathcal{C} = \mathcal{C}_{\mathbb{T}}^{ir} = \mathcal{C}_{\mathbb{T}}^{cart}$

where $\mathcal{C}_{\mathbb{T}}^{cart}$ is the "syntactic cartesian theory" of \mathbb{T} consisting in

• objects which are "<u>cartesian formulas</u>" in the <u>vocabulary</u> Σ of \mathbb{T} , meaning <u>formulas of the form</u> $(\exists \vec{y}) \varphi(\vec{x}, \vec{y})$

where $\varphi(\vec{x}, \vec{y})$ is a <u>Horn formula</u> and the <u>sequent</u>

$$\varphi(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}') \vdash \vec{y} = \vec{y}'$$
 is provable in \mathbb{T} ,

• morphisms which are "cartesian formulas" $\theta(\vec{x}, \vec{y})$

$$\varphi(\vec{x}) \xrightarrow{\theta(\vec{x},\vec{y})} \psi(\vec{y})$$

which are \mathbb{T} -provably functional.

Reduction to theories without function symbols:

Lemma. – For any geometric first-order theory \mathbb{T} in a vocabulary Σ , there is a syntactically equivalent geometric theory \mathbb{T}' whose vocabulary Σ' does not contain function symbols.

Remark: The meaning of "syntactically equivalent" is that the syntactic categories $C_{\mathbb{T}}$ and $C_{\mathbb{T}'}$ of \mathbb{T} and \mathbb{T}' are equivalent:

$$\mathcal{C}_{\mathbb{T}} \cong \mathcal{C}_{\mathbb{T}'}$$

implying

$$\mathcal{E}_{\mathbb{T}} \cong \mathcal{E}_{\mathbb{T}'}.$$

Proof:

• Replace each function symbol $f : A_1 \cdots A_n \to A$ of Σ by a relation symbol $R_f \hookrightarrow A_1 \cdots A_n A$ completed by the axioms

$$\begin{cases} R_f(x_1^{A_1},\cdots,x_n^{A_n},y^A) \land R_f(x_1^{A_1},\cdots,x_n^{A_n},z^A) \vdash y^A = z^A, \\ \top \vdash_{x_1^{A_1},\cdots,x_n^{A_n}} (\exists y^A) R_f(x_1^{A_1},\cdots,x_n^{A_n},y^A). \end{cases}$$

Then replacing each substitution of variables

$$y^{A} = \overline{f(x_{1}^{A_{1}}, \cdots, x_{n}^{A_{n}})}$$
 by $R_{f}(x_{1}^{A_{1}}, \cdots, x_{n}^{A_{n}}, y^{A})$
and each relation $R_{f}(x_{1}^{A_{1}}, \cdots, x_{n}^{A_{n}}, y^{A})$ by the equality $f(x_{1}^{A_{1}}, \cdots, x_{n}^{A_{n}}) = y^{A}$ defines an equivalence of categories $C_{\mathbb{T}} \cong C_{\mathbb{T}'}$.

L. Lafforgue

The case of theories without function symbols and without axioms:

In that case, the cartesian syntactic category and the classifying topos can be described fully explicitly:

Proposition. – Let Σ be a vocabulary without function symbols. Then one can write $\mathcal{E}_{\nabla} \cong \widehat{\mathcal{C}}$ where $C = C_{\Sigma}^{cart}$ is the syntactic cartesian category of Σ explicited as follows: (1) The objects of $C = C_{\Sigma}^{cart}$ are finite conjunctions $\varphi(x_1^{A_1},\cdots,x_n^{A_n})=\bigwedge_{1\leq k\leq\ell}\varphi_k(x_1^{A_1},\cdots,x_n^{A_n})$ of atomic formulas $\varphi_k(x_1^{A_1}, \cdots, x_n^{A_n})$ which are relation symbols $R(x_{i_1}^{A_{i_1}}, \cdots, x_{i_k}^{A_{i_m}})$ or equality relations $x_{i_{i}}^{A_{i_{1}}} = x_{i_{i}}^{A_{i_{2}}} = \cdots = x_{i}^{A_{i_{m}}}$ in part of the variables $x_1^{A_1}, \cdots, x_n^{A_n}$. (2) The morphisms of $C = C_{\Sigma}^{cart}$ $\varphi(x_1^{A_1}, \cdots, x_n^{A_n}) \longrightarrow \psi(x_{\alpha_1}^{A_{\alpha_1}}, \cdots, x_{\alpha_n}^{A_{\alpha_n'}})$ are projections associated with injective maps $\alpha: \{1, \cdots, n'\} \hookrightarrow \{1, \cdots, n\}$ which transform all atomic components of ψ into atomic components of φ .

L. Lafforgue

Geometry and logic of subtoposes

September 3-6, 2024

64/90

IV. Geometric operations on subtoposes

- Unions, intersections and differences of subtoposes
 - Topological expressions.
 - Logical expressions.
- Existential push-forward and pull-back of subtoposes
 - Logical expression of push-forward.
 - Semantic expression of pull-back.
 - Topological expression of push-forward and pull-back.
 - Actions of correspondences and their topological expression.

Compatibility of pull-backs with unions of subtoposes

- The case of locally connected morphisms and its consequences.
- Fibrations, Giraud topologies and locally connected morphisms.
- Factorizations of topos morphisms through locally connected morphisms.
- Galois correspondences associated with essential morphisms of toposes.
- Characterization of pull-backs under essential morphisms.
- Characterization of pull-backs under locally connected morphisms.

65/90

Unions, intersections and differences of toposes:

Proposition. – Let \mathcal{E} be a topos. (i) Any family of subtoposes $(\mathcal{E}_i \hookrightarrow \mathcal{E})_{i \in I}$ has a <u>union</u> $\bigvee_{i \in I} \mathcal{E}_i \hookrightarrow \mathcal{E}$ and an <u>intersection</u> $\bigwedge_{i \in I} \mathcal{E}_i \hookrightarrow \mathcal{E}$ characterized by the properties that, for any subtopos $\mathcal{E}' \hookrightarrow \mathcal{E}$, $\bigvee \mathcal{E}_i \subseteq \overline{\mathcal{E}'} \Leftrightarrow \mathcal{E}_i \subseteq \mathcal{E}', \quad \forall i \in I,$ $\mathcal{E}' \subseteq \bigwedge \mathcal{E}_i \Leftrightarrow \mathcal{E}' \subseteq \mathcal{E}_i, \quad \forall i \in I.$ (ii) For any subtoposes $\mathcal{E}_1, \mathcal{E}_2$ of \mathcal{E} , there exists a subtopos $\mathcal{E}_1 \setminus \overline{\mathcal{E}_2 \hookrightarrow \mathcal{E}}$ characterized by the property that, for any $\mathcal{E}' \hookrightarrow \mathcal{E}$, $\mathcal{E}_1 \setminus \mathcal{E}_2 \subset \mathcal{E}' \Leftrightarrow \mathcal{E}_1 \subset \mathcal{E}_2 \lor \mathcal{E}'$

Remark: (ii) means that the <u>functor</u> $\mathcal{E}' \mapsto \mathcal{E}_2 \vee \mathcal{E}'$ has a <u>left-adjoint</u> $\mathcal{E}_1 \mapsto \mathcal{E}_1 \setminus \mathcal{E}_2$.

Corollary. -

(i) The functor $\mathcal{E}' \mapsto \mathcal{E}_2 \vee \mathcal{E}'$ respects arbitrary intersections.

(ii) As a formal consequence, intersection functors $\mathcal{E}' \mapsto \mathcal{E}_1 \wedge \mathcal{E}'$ respect finite unions of subtoposes.

L. Lafforgue

Geometry and logic of subtoposes

Topological expressions of unions, intersections and differences of subtoposes:

Proposition. – Let $\mathcal{E} = \widehat{\mathcal{C}}_J$ be the topos of sheaves on a site (\mathcal{C}, J) .

- (i) For a family of subtoposes $\mathcal{E}_i = \widehat{\mathcal{C}}_{J_i} \hookrightarrow \widehat{\mathcal{C}}_J = \mathcal{E}$ defined by topologies J_i , $i \in I$, their <u>union $\bigvee \mathcal{E}_i$ is defined</u> by the topology $\bigwedge J_i$ and their <u>intersection</u> $\bigwedge \mathcal{E}_i$ is defined by the topology $\bigvee J_i$ generated by the topologies J_i , $i \in I$.
- (ii) For subtoposes $\mathcal{E}_1 = \widehat{\mathcal{C}}_{J_1}$ and $\mathcal{E}_2 = \widehat{\mathcal{C}}_{J_2}$ defined by topologies J_1, J_2 , their difference $\mathcal{E}_1 \setminus \mathcal{E}_2$ is defined by the topology $\overline{J_0 = (J_2 \Rightarrow J_1)}$ for which a sieve C on an object X is covering if and only if
 - for any morphism $X' \xrightarrow{x} X$ of \mathcal{C} . the maximal sieve is the only sieve on X' which

 - $\begin{cases} & contains \\ & is J_1 closed \\ & and J_2 covering. \end{cases}$

Reminder: A sieve *C* on an object *X* is covering for $\bigvee J_i$ if and only if the maximal sieve is the only sieve on X which

contains C,

$$-$$
 is J_i -closed for any $i \in I$.

Logical expressions of unions and intersections of subtoposes:

Proposition. – Let $\mathcal{E} = \mathcal{E}_{\mathbb{T}}$ be the classifying topos of a geometric first-order theory \mathbb{T} . Let $\mathcal{E}_i = \mathcal{E}_{\mathbb{T}_i} \hookrightarrow \mathcal{E}_{\mathbb{T}} = \mathcal{E}$, $i \in I$, be a family of subtoposes of \mathcal{E} which classify quotient theories \mathbb{T}_i of \mathbb{T} . Then: (i) The intersection subtopos $\bigwedge \mathcal{E}_i \hookrightarrow \mathcal{E}$ classifies the quotient theory $\bigvee \mathbb{T}_i$ of \mathbb{T} defined by the join of the families of axioms of all \mathbb{T}_i 's. (ii) The union subtopos $\bigvee \mathcal{E}_i \hookrightarrow \mathcal{E}$ classifies any quotient theory \mathbb{T}' of \mathbb{T} such that a geometric sequent $\varphi \vdash \psi$ in the vocabulary of \mathbb{T} is provable in \mathbb{T}' if and only if it is provable in each \mathbb{T}_i , $i \in I$. **Remark:** In practice, <u>unions</u> $\bigvee \mathcal{E}_{\mathbb{T}_i}$ can be computed if $\mathcal{E}_{\mathbb{T}}$ and its subtoposes $\mathcal{E}_{\mathbb{T}_i} \hookrightarrow \mathcal{E}_{\mathbb{T}}$ can be presented as $\mathcal{E}_{\mathbb{T}} \cong \widehat{\mathcal{C}}_J$ and $\mathcal{E}_{\mathbb{T}_i} \cong \widehat{\mathcal{C}}_{I_i}, i \in I$, for some explicit topologies J_i , $i \in I$, on a small category C.

Logical expressions of differences of subtoposes:

Proposition (O.C., see chapter 4 of [TST]). – Let $\mathcal{E} = \mathcal{E}_{\mathbb{T}}$ be the classifying topos of a geometric first-order theory \mathbb{T} . Let $\mathcal{E}_1 = \mathcal{E}_{\mathbb{T}_1} \hookrightarrow \mathcal{E}_{\mathbb{T}} = \mathcal{E}$ and $\mathcal{E}_2 = \mathcal{E}_{\mathbb{T}_2} \hookrightarrow \mathcal{E}_{\mathbb{T}} = \mathcal{E}$ be the classifying toposes of quotient theories $\mathbb{T}_1, \mathbb{T}_2$ of \mathbb{T} . Then the difference subtopos $\mathcal{E}_1 \setminus \mathcal{E}_2 \hookrightarrow \mathcal{E}$ classifies the quotient theory of \mathbb{T} $\mathbb{T}' = (\mathbb{T}_2 \Rightarrow \mathbb{T}_1)$ defined from \mathbb{T} by adding as axioms the geometric implications such that: $\psi(\vec{y}) \vdash \psi'(\vec{y})$

- the reverse implication $\psi'(\vec{y}) \vdash \psi(\vec{y})$ is provable in \mathbb{T} ,
- for any geometric formula $\varphi(\vec{x})$ in the vocabulary of \mathbb{T} , for any $\overline{\mathbb{T}}$ -provably functional geometric formula $\theta(\vec{x}, \vec{y}) : \varphi(\vec{x}) \longrightarrow \psi(\vec{y})$ and for any geometric formula $\chi(\vec{x})$ verifying the conditions $\begin{cases} - \chi(\vec{x}) \vdash \varphi(\vec{x}) \text{ is } \mathbb{T}$ -provable, $- \varphi(\vec{x}) \vdash \chi(\vec{x}) \text{ is } \mathbb{T}$ 2-provable, $- (\exists \vec{y})(\theta(\vec{x}, \vec{y}) \land \psi'(\vec{y})) \vdash \chi(\vec{x}) \text{ is } \mathbb{T}$ -provable, then $\varphi(\vec{x}) \vdash \psi(\vec{x}) \text{ is } \mathbb{T}$ 1-provable.

Proof of the logical expressions of differences of subtoposes:

The proof is based on the following theorem:

Theorem. – Let \mathbb{T} be a geometric first-order theory.

(i) The classifying topos $\mathcal{E}_{\mathbb{T}}$ of \mathbb{T} can be constructed as the topos of sheaves

$$\mathcal{E}_{\mathbb{T}} = (\widehat{\mathcal{C}_{\mathbb{T}}})_{J_{\mathbb{T}}}$$

on the geometric syntactic category C_T of \mathbb{T} endowed with the syntactic topology J_T .

- (ii) The canonical functor $\ell : C_T \to \mathcal{E}_T$ is fully faithful.
- (iii) For any object of $C_{\mathbb{T}}$, i.e. any geometric formula $\varphi(\vec{x})$, the subobjects of $\ell(\varphi(\vec{x}))$ in $\mathcal{E}_{\mathbb{T}}$ correspond to subobjects of $\varphi(\vec{x})$ in $\mathcal{C}_{\mathbb{T}}$, i.e. to formulae $\varphi(\vec{x})$ such that $\varphi(\vec{x}) = \varphi(\vec{x})$ is \mathbb{T} provable

i.e. to <u>formulas</u> $\chi(\vec{x})$ such that $\chi(\vec{x}) \vdash \phi(\vec{x})$ is \mathbb{T} -provable.

(iv) In particular, any sieve on an object $\varphi(\vec{x})$ of $C_{\mathbb{T}}$ has an image which is a geometric formula $\chi(\vec{x})$ such that $\chi(\vec{x}) \vdash \varphi(\vec{x})$ is $\overline{\mathbb{T}}$ -provable.

Sketch of the proof of the logical expression of a difference: $\underbrace{Subtoposes}_{J_1} \mathcal{E}_{\mathbb{T}_2} \text{ and } \mathcal{E}_{\mathbb{T}_2} \text{ of } \mathcal{E}_{\mathbb{T}} \text{ are defined by topologies}}_{J_1 \supseteq J_{\mathbb{T}}} \underbrace{J_1 \supseteq J_{\mathbb{T}}}_{\text{and } J_2 \supseteq J_{\mathbb{T}}} \text{ on } \mathcal{C}_{\mathbb{T}}$ such that, for any sieve on an object $\varphi(\vec{x})$ of $\mathcal{C}_{\mathbb{T}}$, it is covering for J_1 [resp. J_2]
if and only if its image $\chi(\vec{x})$ verifies the condition that $\varphi(\vec{x}) \vdash \chi(\vec{x}) \text{ is provable in } \mathbb{T}_1 \text{ [resp. } \mathbb{T}_2].$

Geometry and logic of subtoposes

The logical expression of existential push-forward of subtoposes:

Consider a morphism of toposes $\mathcal{E}' \xrightarrow{e} \mathcal{E}$ presented in the form $\mathcal{E}' = \widehat{\mathcal{C}}_J \longrightarrow \mathcal{E}_{\mathbb{T}} = \mathcal{E}$ which corresponds to a model M of a geometric first-order theory \mathbb{T} in the topos of sheaves on a site (\mathcal{C}, J) .

Proposition. – For any subtopos $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$ corresponding to a topology $J_1 \supseteq J$ and a sheafification functor $i^*: \mathcal{E}' = \widehat{\mathcal{C}}_{,l} \longrightarrow \widehat{\mathcal{C}}_{,l} = \mathcal{E}'_1$. let \mathbb{T}_1 be a quotient theory of \mathbb{T} such that any geometric implication in the vocabulary of \mathbb{T} $\varphi(\vec{x}) \vdash \psi(\vec{x})$ is \mathbb{T}_1 -provable if an only if j^* transforms the embedding of $\widehat{\mathcal{C}}_{I}$ $M(\omega \wedge \psi) \longrightarrow M\omega$ into an isomorphism of $\widehat{\mathcal{C}}_{d}$. Then \mathbb{T}_1 defines the smallest subtopos $\boldsymbol{e}_*(\mathcal{E}_1) = \mathcal{E}_{\mathbb{T}_1} \hookrightarrow \mathcal{E}_{\mathbb{T}}$ such that the composite morphism $\mathcal{E}'_1 \longrightarrow \mathcal{E}' \xrightarrow{e} \mathcal{E} = \mathcal{E}_{\mathbb{T}}$ $\boldsymbol{e}_*(\mathcal{E}'_1) \hookrightarrow \mathcal{E} = \mathcal{E}_{\mathbb{T}}.$ factorizes through

A semantic expression of pull-back of subtoposes:

We still consider a morphism of toposes $\widehat{\mathcal{C}}_J = \mathcal{E}' \xrightarrow{e} \mathcal{E} = \mathcal{E}_{\mathbb{T}}$ which corresponds to a model M of \mathbb{T} in $\widehat{\mathcal{C}}_J$.

Proposition. – For any subtopos $\mathcal{E}_1 \hookrightarrow \mathcal{E} = \mathcal{E}_{\mathbb{T}}$ corresponding to a <u>quotient theory</u> \mathbb{T}_1 of \mathbb{T} defined by a <u>list of extra axioms</u>

 $\varphi_i \vdash \psi_i, \quad i \in I,$

consider the topology J_1 on C

which is generated by J and the stable family of sieves

 $M(\varphi_i \wedge \psi_i) \times_{M\varphi_i} y(X)$

associated with

• the extra axioms
$$\varphi_i \vdash \psi_i$$
, $i \in I$,

• objects X of C embedded via $y : C \hookrightarrow \widehat{C}$,

• <u>elements</u> of $M\varphi_i(X)$ interpreted as morphisms $y(X) \to M\varphi_i$ in $\widehat{\mathcal{C}}$.

Then the topology J_1 on C defines a subtopos

$$\boldsymbol{e}^{-1}\mathcal{E}_1 = \widehat{\mathcal{C}}_{J_1} \hookrightarrow \widehat{\mathcal{C}}_J = \mathcal{E}'$$

such that, for any subtopos $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$,

$$e^{-1}\mathcal{E}_1 \supseteq \mathcal{E}'_1 \Leftrightarrow \mathcal{E}_1 \supseteq e_*\mathcal{E}'_1$$

A topological expression of push-forward of subtoposes:

Consider a morphism of toposes $\mathcal{E}' \xrightarrow{e} \mathcal{E}$ presented in the form $\mathcal{E}' \longrightarrow \mathcal{E} = \widehat{\mathcal{C}}_J$

which corresponds to a functor $\rho : \mathcal{C} \xrightarrow{\ell} \widehat{\mathcal{C}}_J \xrightarrow{e^*} \mathcal{E}'$ which is "<u>flat</u>" and "*J*-<u>continuous</u>".

Proposition. -

For any subtopos $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$ and the <u>associated functor</u> $j^* : \mathcal{E}' \to \mathcal{E}'_1$, let $J_1 \supseteq J$ be the topology on \mathcal{C} for which a <u>sieve</u> \overline{C} on an object X of \mathcal{C} is <u>covering</u> if and only if its <u>transform</u> by

$${}^* \circ \rho : \mathcal{C} \stackrel{\ell}{\longrightarrow} \widehat{\mathcal{C}}_J \stackrel{e^*}{\longrightarrow} \mathcal{E}' \stackrel{j^*}{\longrightarrow} \mathcal{E}'_1$$

is a globally epimorphic family of morphisms.

Then the subtopos defined by J_1

$$\widehat{\mathcal{C}}_{J_1} \longleftrightarrow \widehat{\mathcal{C}}_J = \mathcal{E}$$

is the push-forward of $\mathcal{E}_1' \hookrightarrow \mathcal{E}'$ by $e: \mathcal{E}' \to \mathcal{E}$

$$\boldsymbol{e}_*(\mathcal{E}'_1) \hookrightarrow \mathcal{E}$$

A topological expression of push-forward of subtoposes:

We still consider a morphism of toposes $\mathcal{E}' \xrightarrow{e} \mathcal{E} = \widehat{\mathcal{C}}_J$ corresponding to a functor $\rho : \mathcal{C} \xrightarrow{\ell} \widehat{\mathcal{C}}_J \xrightarrow{e^*} \mathcal{E}'$ and its unique colimit preserving extension $\widehat{\rho} : \widehat{\mathcal{C}} \to \mathcal{E}'$. As ρ is "flat", $\widehat{\rho}$ respects finite limits.

Proposition. – For any subtopos $\mathcal{E}_1 \hookrightarrow \mathcal{E} = \widehat{\mathcal{C}}_1$ defined by a topology $J_1 \supset J$ on \mathcal{C} , its pull-back by the morphism $e: \mathcal{E}' \to \mathcal{E}$ $e^{-1}\mathcal{E}_1 \longrightarrow \mathcal{E}'$ is defined by the topology on \mathcal{E}' generated by the monomorphisms $\widehat{\rho}(\mathcal{C}) \longleftrightarrow \widehat{\rho} \circ \mathcal{V}(\mathcal{X}) = \mathcal{e}^* \circ \ell(\mathcal{X}) = \rho(\mathcal{X})$ obtained as the transformations by $\hat{\rho}$ of any family of sieves on C $(C \longrightarrow v(X))$ which generates the topology J_1 on C from J.

74/90

Correspondences and their actions on subtoposes:

Definition. -

(i) A correspondence between a pair of toposes \mathcal{E} and \mathcal{E}' is a pair of topos morphisms from a third topos \mathcal{E}_{Γ}

$$\mathcal{E}' \stackrel{p}{\longleftrightarrow} \mathcal{E}_{\Gamma} \stackrel{q}{\longrightarrow} \mathcal{E}.$$

(ii) Such a correspondence is called "<u>embedded</u>" if the associated morphism

$$\mathcal{E}_{\Gamma} \longrightarrow \mathcal{E}' \times \mathcal{E}$$

is an embedding.

Definition. – The <u>action</u> of a correspondence $\mathcal{E}' \stackrel{p}{\longleftrightarrow} \mathcal{E}_{\Gamma} \stackrel{q}{\longrightarrow} \mathcal{E}$ on subtoposes is the map

 $q_* \circ p^{-1} : \{ \text{subtoposes of } \mathcal{E}' \} \longrightarrow \{ \text{subtoposes of } \mathcal{E} \}.$

Remark: Any correspondence $\mathcal{E}' < \stackrel{p}{\longrightarrow} \mathcal{E}_{\Gamma} \xrightarrow{q} \mathcal{E}$ defines an embedded correspondence $\mathcal{E}_{\overline{\Gamma}}$ as the image of $\mathcal{E}_{\Gamma} \longrightarrow \mathcal{E}' \times \mathcal{E}$.

But the <u>actions on subtoposes</u> of \mathcal{E}_{Γ} and $\mathcal{E}_{\overline{\Gamma}}$ are <u>not the same</u> in general,

even if
$$p = \text{id}$$
 and $\mathcal{E}' = \mathcal{E}'_{\Gamma} \xrightarrow{q} \mathcal{E}$ is a morphism.

A topological expression of the action of embedded correspondences:

Consider a pair of toposes of sheaves $\mathcal{E}' = \widehat{\mathcal{D}}_K$ and $\mathcal{E} = \widehat{\mathcal{C}}_J$. Their product can be presented as $\mathcal{E}' \times \mathcal{E} = (\widehat{\mathcal{D} \times \mathcal{C}})_{K \times J}$ if $K \times \overline{J}$ denotes the topology on $\mathcal{D} \times \mathcal{C}$ generated by K and J.

Proposition. -

Consider an embedded correspondence $\mathcal{E}_{\Gamma} \hookrightarrow \mathcal{E}' \times \mathcal{E} = (\widetilde{\mathcal{D} \times \mathcal{C}})_{K \times J}$ corresponding to a topology Γ on $\mathcal{D} \times \mathcal{C}$ which contains K and J. Then, for any subtopos

 $\mathcal{E}'_1 \hookrightarrow \mathcal{E}'$ corresponding to a <u>topology</u> $K_1 \supseteq K$ on \mathcal{D} , its <u>transform</u> by the correspondence \mathcal{E}_{Γ} is the subtopos

 $\overline{\mathcal{E}}_1 \longrightarrow \mathcal{E}$

defined by the topology $J_1 \supseteq J$ on C for which a sieve

C on an object X of C

is covering if and only if, for any object Y of \mathcal{D} ,

C considered as a <u>sieve</u> on the object (Y, X) of $\mathcal{D} \times \mathcal{C}$

is covering for the topology generated by Γ and K_1 .

The theorem on compatibility of pull-backs and unions of subtoposes:

For any topos morphism $e: \mathcal{E}' \to \mathcal{E}$, the associated maps

$$\{\text{subtoposes of } \mathcal{E}'\} \xrightarrow[e_*]{e_*} \{\text{subtoposes of } \mathcal{E}\}$$

are adjoint.

So e^{-1} respects arbitrary intersections of toposes

and e_* respects arbitrary unions.

In general, e_* does not respect even <u>finite intersections</u>.

On the other hand, we are going to sketch the proof of:

Theorem. – Let $e : \mathcal{E}' \to \mathcal{E}$ be a morphism of toposes. Then:

(i) The induced pull-back map e^{-1} respects finite unions of toposes.

(ii) If the morphism e is "locally connected"

 e^{-1} even respects arbitrary unions of toposes and, as a consequence, has a left adjoint

 $e_{!}: \{ \textit{subtoposes of } \mathcal{E}' \} \longrightarrow \{ \textit{subtoposes of } \mathcal{E} \}$

<u>characterized</u> by the property that,

for any subtoposes $\mathcal{E}_1' \hookrightarrow \mathcal{E}'$ and $\mathcal{E}_1 \hookrightarrow \mathcal{E}$,

$$\boldsymbol{e}_! \, \mathcal{E}'_1 \supseteq \mathcal{E}_1 \Longleftrightarrow \mathcal{E}'_1 \supseteq f^{-1} \mathcal{E}_1 \, .$$

Reminder on "locally connected" morphisms:

Definition. -

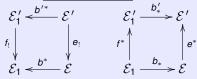
(i) A topos morphism $e = (e^*, e_*) : \mathcal{E}' \to \mathcal{E}$ is called "<u>essential</u>" if

 $e^*: \mathcal{E} \to \mathcal{E}'$ also has a left adjoint $e_!: \mathcal{E}' \to \mathcal{E}$.

(ii) An essential morphism of toposes

$$\mathbf{e} = (\mathbf{e}_!, \mathbf{e}^*, \mathbf{e}_*) : \mathcal{E}' \to \mathcal{E}$$

is called "locally connected" if, for any base change morphism $\mathcal{E}_1 \xrightarrow{b} \mathcal{E}$, the induced morphism $f = (f^*, f_*) : \mathcal{E}'_1 = \mathcal{E}' \times_{\mathcal{E}} \mathcal{E}_1 \to \mathcal{E}_1$ is still <u>essential</u>, and the adjoint squares



are commutative.

Remark: It can be proved that, in order to verify that an essential morphism $e = (e_1, e^*, e_*) : \mathcal{E}' \to \mathcal{E}$ is "locally connected", it is enough to consider base changes by morphisms $\mathcal{E}_1 = \mathcal{E}/\mathcal{E} \to \mathcal{E}$ associated to objects \mathcal{E} of \mathcal{E} .

Geometry and logic of subtoposes

Reduction to the case of locally connected morphisms:

We already know that <u>functors of intersections</u> with a <u>subtopos</u> $\mathcal{E}' \hookrightarrow \mathcal{E}$ respect finite unions.

So part (i) of the theorem is reduced to part (ii) and the following:

 $\begin{array}{l} \textbf{Proposition.} - \textit{Any topos morphism } \mathcal{E}' \to \mathcal{E} \ \underline{factorizes} \ as \\ \hline \mathcal{E}' \longleftrightarrow \widehat{\mathcal{C}}'_{J'} \longrightarrow \widehat{\mathcal{C}}_{J} \xrightarrow{\sim} \mathcal{E} \ where \\ \bullet \ \mathcal{E}' \longleftrightarrow \widehat{\mathcal{C}}'_{J'} \ is an embedding of toposes, \\ \bullet \ \widehat{\mathcal{C}}'_{J}, \longrightarrow \widehat{\mathcal{C}}_{J} \ is induced by \ a \ \underline{fibration} \ \mathcal{C}' \xrightarrow{p} \mathcal{C}, \\ \bullet \ J' = p^*(J) \ is \ the \ \underline{Giraud \ topology}'' \ induced \ by \ J \ from \ \mathcal{C} \ to \ \mathcal{C}', \\ \bullet \ \widehat{\mathcal{C}}_{J} \xrightarrow{\sim} \mathcal{E} \ is \ an \ \underline{equivalence}. \end{array}$

Theorem. -

If $C' \xrightarrow{p} C$ is a <u>fibration</u> and $J' = p^*(J)$ is the "Giraud topology" on C'induced by a <u>topology</u> J on C, the induced topos morphism

$$p:\widehat{\mathcal{C}}'_{J'}\longrightarrow \widehat{\mathcal{C}}_J$$

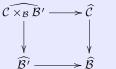
is "locally connected".

L. Lafforgue

Reminder on fibrations:

Definition. - Consider a <u>functor</u> p: C → B.
(i) A morphism x: X₁ → X₂ of C is called "p-<u>cartesian</u>" if, for any morphism x₂: X → X₂ of C and any morphism y₁: p(X) → p(X₁) of B such that p(x₂) = p(x) ∘ y₁, there is a <u>unique morphism</u> x₁: X → X₁ such that x₂ = x ∘ x₁ and p(x₁) = y₁.
(ii) The <u>functor</u> p: C → B is called a "<u>fibration</u>" if, for any object X₁ of C and any morphism Y → p(X₁) of B, there exists a p-<u>cartesian</u> morphism X → X₁ of C and an isomorphism y : p(X) → Y such that p(x₁) = y₁ ∘ y.

Proposition. – Consider a <u>fibration</u> $p : C \to B$ of essentially small categories. Then for any functor $\mathcal{B}' \to \mathcal{B}$ from an essentially small category \mathcal{B}' to \mathcal{B} , the <u>induced fuctor</u> $\mathcal{C} \times_{\mathcal{B}} \mathcal{B}' \to \mathcal{B}'$ is still a <u>fibration</u>, and the topos square



is cartesian.

Reminder on Giraud topologies:

Proposition. – Consider a fibration of essentially small categories $p: \mathcal{C}' \longrightarrow \mathcal{C}$ and the essential morphism it defines $\boldsymbol{p} = (\boldsymbol{p}_1, \boldsymbol{p}^*, \boldsymbol{p}_*) : \widehat{\mathcal{C}}' \longrightarrow \widehat{\mathcal{C}}.$ Then, for any subtopos $\widehat{\mathcal{C}}_{I} \longrightarrow \widehat{\mathcal{C}}_{I}$ its pull-back by p $\widehat{\mathcal{C}}'_{\prime\prime} \hookrightarrow \widehat{\mathcal{C}}'$ is the subtopos defined by the "Giraud topology" J' on C' for which a sieve C on an object X of C' is covering if and only if the images by p $p(x): p(X') \longrightarrow p(X)$ of the p-cartesian morphisms contained in C $x: X' \longrightarrow X$ make up a J-covering family of the object p(X) of C.

Fibrations and locally connected morphisms:

Corollary. – Consider a <u>fibration</u> $p : C' \to C$ of <u>essentially small categories</u>. Then:

(i) The map

 $\begin{array}{rcl} \overline{\{topologies \ on \ \mathcal{C}\}} &\longrightarrow & \{topologies \ on \ \mathcal{C}'\} \\ J &\longmapsto & J' = & Giraud \ topology \ induced \ by \ J \\ \hline respects \ arbitrary \ \underline{intersections} \ of \ topologies. \ In \ other \ words, \ the \ \underline{map} \\ p^{-1} : \{subtoposes \ of \ \widehat{\mathcal{C}}\} \longrightarrow \{subtoposes \ of \ \mathcal{C}'\} \\ respects \ arbitrary \ \underline{unions} \ of \ subtoposes. \end{array}$

(ii) For any topology J on C and the induced Giraud topology J' on C', the functor of composition with p

$$p^*: \widehat{\mathcal{C}} \longrightarrow \widehat{\mathcal{C}}'$$

<u>transforms</u> J-<u>sheaves</u> into J'-<u>sheaves</u> and <u>respects</u> arbitrary <u>limits</u>. In other words, there are two adjoint commutative squares:

Factorization of topos morphisms:

- Consider an arbitrary topos morphism $\mathcal{E}' \xrightarrow{e} \mathcal{E}$.
- We can write 𝔅 ≅ 𝔅_J, 𝔅' ≅ 𝔅_K where 𝔅 ↔ 𝔅, 𝔅 → 𝔅' are small full subcategories such that 𝑛* : 𝔅 → 𝔅' restricts to a functor ρ : 𝔅 → 𝔅.

Theorem (O.C., see [Denseness]). – Consider the small category C' = D/C whose

- objects are triplets $(Y, X, Y \rightarrow \rho(X))$ consisting in

objects Y of \mathcal{D} , X of \mathcal{C} and a morphism $Y \xrightarrow{t} \rho(X)$ of \mathcal{D} ,

$$- \underline{\textit{morphisms}} (Y_1, X_1, Y_1 \xrightarrow{t_1} \rho(X_1)) \longrightarrow (Y_2, X_2, Y_2 \xrightarrow{t_2} \rho(X_2))$$

are pairs of compatible morphisms $(Y_1 \xrightarrow{y} Y_2, X_1 \xrightarrow{x} X_2)$.

Let K' and J' be the topologies on C' = D/Cinduced by K and J via the forgetful functors $D/C \to D$ and $D/C \to C$. Then:

(i) The morphism C
[']_{K'} → D
[']_K induced by C['] = D/C → D is an equivalence of toposes.

(ii) The topology K' <u>contains</u> J', and there is an embedding $\widehat{\mathcal{C}}'_{K'} \hookrightarrow \widehat{\mathcal{C}}'_{J'}$.

(iii) The forgetful functor $C' = D/C \rightarrow C$ is a fibration

and J' is the "Giraud topology" induced by J.

(iv) The topos morphism $\mathcal{E}' \xrightarrow{e} \mathcal{E}$ <u>factorizes</u> as $\widehat{\mathcal{D}}_K \cong \widehat{\mathcal{C}}'_{K'} \longrightarrow \widehat{\mathcal{C}}'_{J'} \longrightarrow \widehat{\mathcal{C}}_J.$

L. Lafforgue

Galois correspondences between subobjects:

Lemma. –

Consider an essential morphism of toposes $e = (e_1, e^*, e_*) : \mathcal{E}' \to \mathcal{E}$. For any <u>object</u> E' of \mathcal{E}' , consider the two <u>maps</u>

$$\{\underbrace{\text{subobjects}}_{C'} C' \hookrightarrow E'\} \xrightarrow[G_{E'}]{F_{E'}} \{\underbrace{\text{subobjects}}_{G_{E'}} C \hookrightarrow e_! E'\}$$

defined by

$$F_{E'}(C' \hookrightarrow E') = (\operatorname{Im} e_! C' \hookrightarrow e_! E'),$$

$$F_{E'}(C \hookrightarrow e_! E') = (e^* C \times e_! e_! E' \hookrightarrow E' \hookrightarrow E')$$

Then, these maps respect the <u>order relations</u> \subseteq on these sets, and $F_{E'}$ is left adjoint of $G_{E'}$.

Corollary. -

- (i) There is an induced one-to-one correspondence between the $(C' \hookrightarrow E')$ which are <u>fixed</u> under $G_{E'} \circ F_{E'}$ and the $(C \hookrightarrow e_! E')$ which are <u>fixed</u> under $F_{E'} \circ G_{E'}$.
- (ii) For any $C' \hookrightarrow E'$, its image under $G_{E'} \circ F_{E'}$ is the smallest fixed point which <u>contains</u> it.
- (iii) For any $C \hookrightarrow e_! E'$, its image under $F_{E'} \circ G_{E'}$ is the biggest fixed point which is <u>contained</u> in it.

84/90

Union of fixed points:

We still consider an essential morphism $e = (e_1, e^*, e_*) : \mathcal{E}' \to \mathcal{E}$.

Lemma. –

their union

For any family of subobjects of an object E' of \mathcal{E}'

$$C'_k \longrightarrow E', k \in K$$
, which are fixed under $G_{E'} \circ F_{E'}$,
 $\bigvee_{k \in K} C'_k \longrightarrow E'$ is fixed under $G_{E'} \circ F_{E'}$.

Proof:

If each $C'_k \hookrightarrow E'$ corresponds to a fixed subobject $C_k \hookrightarrow e_! E'$, the formulas $C'_k = e^* C_k \times_{e^* e_! E'} E', \ k \in K$, induce the formula

$$\bigvee_{k\in K} C'_k = e^* \left(\bigvee_{k\in K} C_k\right) \times_{e^*e_!E'} E'.$$

Corollary. – For any object E' of C', any subobject $C' \hookrightarrow E'$ contains a biggest fixed subobject

$$\check{\mathcal{C}}' \longrightarrow \mathcal{C}' \longrightarrow \mathcal{E}'.$$

Stability of fixed points:

Lemma. –

Consider an essential morphism of toposes $e = (e_1, e^*, e_*) : \mathcal{E}' \to \mathcal{E}$. Then:

(i) For any morphism
$$E'_2 \to E'_1$$
 of \mathcal{E}' , the map

$$(C' \hookrightarrow E'_1) \longmapsto (C' \times_{E'_1} E'_2 \hookrightarrow E'_2)$$

transforms

any image under $G_{E'_1}$ of some $C \hookrightarrow e_! E'_1$ into the image under $G_{E'_2}$ of $C \times_{e_! E'_1} e_! E'_2$.

(ii) For any object E of \mathcal{E} and any subobject $C \hookrightarrow E$, the associated subobject

 $e^*C \longrightarrow e^*E$

is the image under G_{e^*E} of the subobject $C \times_E e_! e^*E \longrightarrow e_! e^*E.$

Proof:

(i) comes from the fact that e^* respects fiber products.

(ii) Indeed, if $C_1 = C \times_E e_! e^* E \hookrightarrow e_! e^* E$, we have

$$e^*C_1 \times_{e^*e_!e^*E} e^*E = (e^*C \times_{e^*E} e^*e_!e^*E) \times_{e^*e_!e^*E} e^*E = e^*C \hookrightarrow e^*E.$$

Characterization of pull-backs under essential morphisms:

Theorem (O.C., L.L., to appear in [Engendrement]). – Consider an essential morphism of toposes $e = (e_!, e^*, e_*) : \mathcal{E}' \to \mathcal{E}$. Then for any subtoposes defined by a topology J on \mathcal{E} $\mathcal{E}_I \subseteq \mathcal{E}$.

its pull-back under $e: \mathcal{E}' \to \mathcal{E}$ is defined by the topology J' consisting in monomorphisms $C' \hookrightarrow E'$ of \mathcal{E}'

verifying the condition that

 \int there exists a monomorphism $(C \hookrightarrow e_! E')$ in J

such that $(C' \hookrightarrow E')$ contains $(e^*C \times_{e^*e_!E'} E' \hookrightarrow E')$.

Proof:

The topology J' on E' which defines the pull-back of E_J → E is generated by the monomorphisms (e^{*}C → e^{*}E) induced by elements (C → E) of J.

• According to part (ii) of the previous lemma, all these generators belong to the <u>class</u> J''of monomorphisms $(C' \hookrightarrow E')$ which verify the above <u>condition</u>.

- As J' is stable, we also have that $J'' \subseteq J'$.
- To conclude, we need to prove that J'' is a topology on \mathcal{E}' .

Verification of the topology axioms:

- We are reduced to proving that the <u>class</u> J'' of <u>monomorphisms</u> $(C' \hookrightarrow E')$ such that there exists $(C \hookrightarrow e_!E')$ in J verifying $e^*C \times_{e^*e_!E'}E' \subseteq C'$ is a <u>topology</u> on \mathcal{E}' .
- It obviously verifies the maximality axioms.
- Stability results from part (i) of the previous lemma.
- For transitivity, consider two monomorphisms of *E*[']

 $C' \hookrightarrow \overline{E'}$ and $D' \hookrightarrow \overline{E'}$

and a globally epimorphic family $(E'_k \to D')_{k \in K}$ such that there exist <u>elements</u> of *J*

 $D \hookrightarrow \overline{e_! E'}$ and $C_k \hookrightarrow e_! E'_k$, $k \in K$,

verifying

 $D' \supseteq e^*D \times_{e^*e_!E'}E'$ and $C' \times_{E'}E'_k \supseteq e^*C_k \times_{e^*e_!E'_k}E'_k$, $k \in K$. The family of morphisms $e_!E'_k \to e_!D'$, $k \in K$, is still globally epimorphic. Let $C \hookrightarrow e_!E'$ be the <u>union</u> of the images of the morphisms

$$C_k \longrightarrow e_! E'_k \longrightarrow e_! D' \longrightarrow e_! E'.$$

Then

(- the monomorphism $C \hookrightarrow e_! E'$ belongs to J,

$$(- \text{ the } \overline{\text{subobject } C' \hookrightarrow E' \text{ contains } e^*C \times_{e^*e_!E'}E', }$$

which proves that J'' verifies transitivity.

L. Lafforgue

Characterization of pull-backs under locally connected morphisms:

Theorem (O.C., L.L., to appear in [Engendrement]). – Consider a locally connected topos morphism $\boldsymbol{e} = (\boldsymbol{e}_1, \boldsymbol{e}^*, \boldsymbol{e}_*) : \mathcal{E}' \to \mathcal{E}.$ Consider a subtopos defined by a topology J on \mathcal{E} $\overline{\mathcal{E}}_{I} \longrightarrow \overline{\mathcal{E}}$ and its pull-back by e defined by a topology J' on \mathcal{E}' $\mathcal{E}'_{I'} \hookrightarrow \mathcal{E}'.$ Then a monomorphism of \mathcal{E}' $C' \hookrightarrow F'$ belongs to J' if and only if its biggest fixed subobject $\check{C}' \hookrightarrow E'$ corresponds to a fixed subobject $C \longrightarrow e_1 E'$ which belongs to J.

As this characterization respects intersections of topologies, we get:

Corollary. – If a topos morphism $e : \mathcal{E}' \to \mathcal{E}$ is locally connected, the associated pull-back map e^{-1} on subtoposes respects arbitrary <u>unions</u>, so has a <u>left adjoint</u> $e_!$.

L. Lafforgue

Geometry and logic of subtoposes

Characterization in the case of fixed points:

We consider the locally connected morphism

 $e = (e_!, e^*, e_*) : \mathcal{E}' \longrightarrow \mathcal{E},$

a subtopos $\mathcal{E}_J \hookrightarrow \mathcal{E}$ defined by a topology Jand its pull-back $\mathcal{E}'_J \hookrightarrow \mathcal{E}'$ defined by a topology J'. The proof of the theorem reduces to:

Lemma. – For any object E' of \mathcal{E}' and any fixed subobject $C' \hookrightarrow E'$, which corresponds to a fixed subobject $C \hookrightarrow e_! E'$, the monomorphism $C' \hookrightarrow E'$ belongs to J' if and only if $C \hookrightarrow e_! E'$ belongs to J.

Proof:

- As $C' = e^*C \times_{e^*e_!E'}E'$, $C' \hookrightarrow E'$ belongs to J' if $C \hookrightarrow e_!E'$ belongs to J.
- The implication in the reverse direction is a consequence of the commutativity of the square

which is part of the definition of "local connectedness" of e.

L. Lafforgue

Geometry and logic of subtoposes

90/90