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We would like to find a common generalization:

Colimits Homotopy colimits

Enriched colimits ?

In such a way that we retrieve:

• homotopy colimits for V = Set
• enriched colimits forW = isomorphisms
• ordinary colimits forW = isomorphisms and V = Set

The approach we pursue is based on the emergence of a
”canonical” homotopy theory on [∆◦,V] behaving as a V-
enriched version of Kan’s homotopy theory on sSet. 6



Recall what homotopy colimits are. One can think about them:

(i) as models to reduce higher categorical colimits to
1-categorical computations;
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Recall what homotopy colimits are. One can think about them:

(i) as models to reduce higher categorical colimits to
1-categorical computations;

(ii) as colimits which are coherent relatively to a chosen
subcategoryW .

Point (ii) is more fundamental; in fact, there seems to be
a pattern where every type of ”category theory” should
admit a ”relative” version (where you consider categories
with a specified class of weak equivalences) with a corre-
sponding a notion of ”homotopy colimits” which give the
correct way of glueing objects.
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For a relative 1-category (C,W), take the ordinary cocom-
pletion [C◦, Set], pass to simplicial objects [∆◦, [C◦, Set]],
with a certain choice of weak equivalences that includes
all the maps between representables hc → hc′ coming
from a weak equivalence c → c′ in C. This gives you the
homotopy cocompletion of (C,W).
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For a relative 1-category (C,W), take the ordinary cocom-
pletion [C◦, Set], pass to simplicial objects [∆◦, [C◦, Set]],
with a certain choice of weak equivalences that includes
all the maps between representables hc → hc′ coming
from a weak equivalence c → c′ in C. This gives you the
homotopy cocompletion of (C,W).

Claim: this recipe gives you homotopy cocompletions for
other types of ”relative category theories”, such as:
• relative enriched 1-categories, taking [∆◦, [C◦,V]]
• relative∞-categories, taking [∆◦, [C◦,S]], where S is
the∞-category of spaces;

• relative enriched∞-categories;
• etc.
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The important case to understand is C = {a point}.
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The important case to understand is C = {a point}.

For relative 1-categories, the homotopy cocompletion of
a point is the homotopy theory of spaces S , which is pre-
sented by Kan-Quillen model structure on [∆◦, Set].

We need an homotopy theory on [ ∆◦,V] playing the role
of the homotopy theory of spaces for enriched relative 1-
categories. We might call the fibrant objects V-spaces or
Kan V-complexes.
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We focus on choosing the (trivial) fibrations on [ ∆◦,V]. Using
the ”underlying” functor V (1,−) : V → Set does not work,
because we loose too much information.
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We focus on choosing the (trivial) fibrations on [ ∆◦,V]. Using
the ”underlying” functor V (1,−) : V → Set does not work,
because we loose too much information.

We call a morphism f : X → Y a V-fibration (resp. trivial)
when the morphism V (v, X) → V (v, Y) is a Kan fibration
(resp. trivial fibration) of simplicial sets for every v ∈ V .

Where V (v, X) is the composition ∆◦ X−→ V V(v,−)−−−−→ Set.
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Recall that a topos E is called locally connected when the
discrete functor disc : Set→ E has a left adjoint π0 : E → Set.
E ∈ E is connected iff it has no non-trivial summands iff
π0(E) ∼= ∗.
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presheaf topos, the connected objects coincide with the
orbits, i.e. with those P such that colimP ∼= ∗; this generalizes
the orbits of a group G.
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Recall that a topos E is called locally connected when the
discrete functor disc : Set→ E has a left adjoint π0 : E → Set.
E ∈ E is connected iff it has no non-trivial summands iff
π0(E) ∼= ∗. Slightly more generally, I call a topos C-semisimple
iff every object is a retract of a coproduct of connected objects.
Every locally connected topos is C-semisimple. In a presheaf
topos, the connected objects coincide with the orbits, i.e. with
those P such that colimP ∼= ∗; this generalizes the orbits of a
group G. In such a situation, [∆◦, E ] always carries ”the orbit
model structure” (of Dwyer & Kan), where the (trivial) fibrations
are detected by mapping out of every connected object. Since
every object is a retract of a coproduct of connected objects,
these are the same as the V-fibrations of the previous slide
(E = V). The existence of this model structure has been
recently extended to the setting of an infinitary lextensive
category E (not assumed to be cocomplete) by Gambino,
Henry, Sattler, and Szumilo. 23



In particular, for [∆◦,GSet] we have the ”genuine” or ”fine”
homotopy theory of G-spaces, where fibrations and weak
equivalences are detected mapping out of every orbit.

The GSet-enriched homotopy cocompletion of a point is
the genuine homotopy theory of G-spaces.

Elmendorf theorem becomes the following statement:

the GSet-enriched homotopy cocompletion of a point is
equivalent to the ordinary homotopy cocompletion of the
category of orbits of G.
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A classical theorem, due to Dugger, is that for V = Set, the
projective structure on simplicial presheaves on a 1-category C
is the ”universal model category” generated by C.
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A classical theorem, due to Dugger, is that for V = Set, the
projective structure on simplicial presheaves on a 1-category C
is the ”universal model category” generated by C.

For V = Ab, the category of Abelian groups, this problem was
considered by Dugger and Shipley. DS observed that they were
not able to obtain the full universal property (in particular,
they lacked the uniqueness).

As a sanity check for our point of view, we want to show that
the enriched version of Dugger theorem holds, with the
universal property in its full strenght.

We need a definition of enriched model structure retrieving
the ordinary definition over the base V = Set: we replace weak
factorization systems with V-enriched w.f.s. (Riehl) 28



We can prove an enriched version of Dugger’s theorem:

every enriched functor from a small V-category into an
enriched model category factorizes up to weak equiva-
lence along the Yoneda embedding via a V-enriched left
Quillen functor, and the space of such factorizations is
contractible.

C

[C◦, [∆◦,V]] M

y⊗∆0 D

Re(D)(-)

29



As a corollary, we also obtain a V-enriched version of
Dwyer-Kan mapping spaces:

for every object M ∈ M, the map M : 1 → M induces a
homotopically unique right Quillen V-functor

Map (M,−) : M ⇄ [∆◦,V]

taking values in the subcategory of Kan V-complexes

whereM is an enriched model category.
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We can prove that Kan V-complexes have the following
properties:

the space of V-enriched Quillen autoequivalences of
[∆◦,V] is contractible and every autoequivalence is
Quillen homotopic to the identity

31



We can prove that Kan V-complexes have the following
properties:

the space of V-enriched Quillen autoequivalences of
[∆◦,V] is contractible and every autoequivalence is
Quillen homotopic to the identity

and a version over V of a fundamental result of Joyal:

for every internal category C in V , the internal nerve of C
is a Kan V-complex if and only if C is an internal groupoid.
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It is natural to wonder if the notion of enriched model category
we are using has an underlying enriched∞-category.
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It is natural to wonder if the notion of enriched model category
we are using has an underlying enriched∞-category.

First, we have that:

endowing [∆◦,V]with (trivial) V-fibrations, the underlying
∞-category of [∆◦,V] is closed monoidal.
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It is natural to wonder if the notion of enriched model category
we are using has an underlying enriched∞-category.

Endowing [∆◦,V] with (trivial) V-fibrations, the underlying
∞-category of [∆◦,V] is closed monoidal.

Combining our results with Gepner-Haugseng’s and Lurie’s we
can prove that:

the underlying∞-category of an enrichedmodel category
is enriched over the∞-category of Kan V-complexes.

We obtain a concrete model for weighted colimits in these
enriched∞-categories.
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Shulman was the first to study homotopy colimits in the
enriched context (see also Riehl for an elaboration); there are
also definitions by Vokřínek and Lack & Rosický.

As we have seen, the difference of these other references
with our approach can be summarized by saying that we
do not assume a homotopical structure on V , but instead
enrich over a canonical structure on [∆◦,V].

Fixing a structure on V , the (derived) homotopy colimit functor
is not necessarily V-enriched.

This issue disappears in our approach.

Another way of dealing with it (Lack & Rosický) is to restrict the
base of enrichment to a combinatorial monoidal model
category V that has all objects cofibrant (see also Shulman). 36



In this slide, we suppose that V is endowed with a good
enough model structure µ in which in particular all objects are
cofibrant (example: Cisinski model structure on V a topos), and
such that V is enriched in the model structure µ on itself.
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In this slide, we suppose that V is endowed with a good
enough model structure µ in which in particular all objects are
cofibrant (example: Cisinski model structure on V a topos), and
such that V is enriched in the model structure µ on itself.

Then for every such choice of model structure µ on V we
have a left Quillen V-functor ∥−∥µ : [C◦, [∆◦,V]] → [C◦,V]
induced by the Yoneda embedding y : C → [C◦,V].

C

[C◦, [∆◦,V]] [C◦,V]

y⊗∆0
y

∥−∥µ
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Then we have the following comparison between our notion of
homotopy V-colimit and the approach based on deriving the
weighted colimit functor:

for every model structure µ on V as above, for every V-
diagram D valued in cofibrant objects in a µ-enriched
model category M, our realization functor Re(D)(−) is
Quillen homotopic to the weighted colimit ∥ − ∥µ ⊗C D

C

[C◦, [∆◦,V]] [C◦,V] M

y⊗∆0
y

D

∥−∥µ

Re(D)(−)

(−)⊗CD
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C

[C◦, [∆◦, Set]] [C◦, Set] M

y⊗∆0
y

D

∥−∥µ

Re(D)(−)

(−)⊗CD

To retrieve ordinary and enriched colimits as particular cases,
consider V = Set,M cocomplete and take µ the trival model
structure whereW = isomorphisms. In this setting, a Quillen
homotopy is just an isomorphism. Moreover, for any cofibrant
replacement of the terminal weight one has ∥Q(∗)∥ ∼= ∗, hence

Re(D)(Q(∗)) ∼= ∥Q(∗)∥ ⊗C D ∼= ∗ ⊗C D ∼= colimD

Similarly for enriched colimits. 40



Thank you!
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