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Introduction

In practice, topoi are often presented through sites.

As well, geometric morphisms are often presented by functors between those sites.

Two dual classes of functors between sites induce geometric morphisms:

morphisms of sites, characterized by some preservation property

comorphisms of sites, characterized by some reflection property

In this talk we will try to understand the reason of this dichotomy, and how to
reconciliate those to classes of functors:

either by arranging them altogether in a suited 2-dimensional structure

either by exhibiting them as two instances of a same notion
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Morphisms and comorphisms of sites



Sieves

Grothendieck topologies and coverages can be expressed in several ways, either
through covering families, or also through sieves.

Definition

A sieve on an object c in a category C is a subobject of the representable S ↣よc .

Equivalently, a family S of arrows with codomain c absorbing under precomposition:
if u : c ′ → c is in S , then for any u′ : c ′′ → c ′ the composite uu′ : c ′′ → c is in S .

For a family of arrows S with common codomain c, the sieve generated by S is the
set of maps that factorizes through a map in S

S =

{
v : d → c | ∃u : c ′ → c ∈ S such that

d c

c ′

v

∃
u

}

For two sieves S , R on c, R ≤ S if any arrow in R factorizes through an arrow in S .
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Coverage and sites

Definition

A Grothendieck coverage J on C consists for each object c of a set J(c) of sieves
on c that are declared J-covering, such that

for each c, the maximal sieve, which is よc , is in J(c)

for each arrow a : d → c and each S in J(c), the pullback sieve below is in J(d)

a∗S =

{
v : d ′ → d | ∃u : c ′ → c ∈ S and a factorization

d ′ c ′

d c

∃

v u∈S

a

}

This can be completed with additional axioms, as the axiom of locality, in order to
define Grothendieck topologies; however in this talk we will only consider coverages.

Definition

A site is a pair (C, J) with J a coverage on C.

Sites in this talk will be considered as small generated, that is, generated from a
small category, even when they are large.
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Notions of morphisms between sites

A functor between sites (C, J) and (D,K) may behave in two relevant ways relative
to the coverages:

either by preserving covering sieves

either by reflecting covering sieves

Combined with flatness conditions (which we will not discuss much in this talk),
cover preservation allows to define a notion of morphism of sites.

On the other hand cover reflection allows to define a notion of comorphism of sites

Both induce geometric morphisms between associated sheaf topoi.

Let us revisit those ideas through the formalism of extensions and restrictions.
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Extension and restriction

Recall that any functor f : C → D induces a triple of adjoints

Ĉ D̂

lextf

rextf

restf

⊣
⊣

where lextf (resp. rextf ) sends a presheaf X : C op → Set to its left (resp. right) Kan
extension along f op

lextfX = lanf opX rextfX = ranf opX

while the restriction functor restf sends a presheaf Y : D op → Set to the precomposite

restfY = Y (f (−))

Beware that lext and rest are covariant in f , while rest is contravariant in f .
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Extension and restriction from the nerves

Extensions and restrictions functors can also be constructed formally from the left
and right nerves depicted below:

C D

Ĉ

f

よC
D(f ,1)

nf
C D

D̂

f

D(1,f )
よD

Proposition

For any functor f : C → D the nerve satisfies the following identities

restf = lanよDD(f , 1)

= lanD(1,f )よC

while the left and right extensions can be computed as the extensions

lextf = lanよCD(1, f ) rextf = ranよCD(1, f )

The formalism of extension and restrictions, applied to sieves, will be the common
thread of the two parts of this work.
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Extension of sieves

For a sieve S ↣よc on an object of C, the left extension lextf S is a sieve on f (c)
and can be computed at any object d as the coend

lextf (S)(d) =

∫ c′∈C
D(d , f (c ′))× S(c ′)

which is exactly the set of arrows factorizing through the image of S

{
v : d → f (c) |

d f (c)

f (c ′)

v

∃
f (u)

for some u : c ′ → c ∈ S(c ′)

}
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Restriction of sieves

Dually, for a functor f : C → D and a sieve R ↣よd , the restriction restf R can be
computed at c ′ in C through the coend formula

restf R(c
′) =

∫ d′∈D
R(d ′)×D(f (c ′), d ′)

which is exactly the set of arrow from f (c ′) in D that lie in R:

{
v : f (c ′) → d |

f (c ′) d

d ′

v

∃
v′

for some v ′ : d ′ → d ∈ R(d)

}

In the case where d is of the form f (c), restf R is a subobject of restfよf (c).

However, beware that restfよf (c) ≃ D(f , f (c)), which is not a representable on C:
hence restf R is not itself yet a sieve on C. However, it locally is !
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Restriction of sieves

There is a canonical element νc : よc → restfよf (c) given by the canonical 2-cell

ν :よC ⇒ D(f , 1)f associated with the nerve of f .

Then one can consider the pullback presheaf

f −1(R) restf R

よc D(f , f (c))

⌟

νc

which is now a subobject of よc and corresponds to the sieve on c given by the set

{
u : c ′ → c |

f (c ′) f (c)

d ′

f (u)

∃
v′

for some v ′ : d ′ → f (c) ∈ R(d)

}
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Cover-preservation and morphisms of sites

Definition

A functor between sites f : (C, J) → (D,K) is said to be cover-preserving if for any
J-covering sieve S ↣よc in J(c), the sieve generated in D from arrows of the forms
f (u) : f (c ′) → f (c) is K -covering.

Or using the extension functors, this rephrases as:

Definition

A functor between sites f : (C, J) → (D,K) is cover-preserving if for any
J-covering sieve S ↣よc in J(c), the sieve lextf S is in K(f (c)).

In general cover-preservation is combined with with flatness to produce a convenient
notion of functor between sites:

Definition

A morphism of sites is a flat functor that is cover-preserving.
If E is a topos, a functor (C, J) → E is said to be J-continuous if it is flat and

defines a morphism of sites into (E , Jcan) where Jcan is the canonical topology on E .

We will denote as Sit♭ the 2-category of sites, morphisms of sites and transformations
between them.
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Geometric morphism from a morphism of sites

A morphism of sites f : (C, J) → (D,K) induces a geometric morphism f̂ whose
inverse image is constructed as the left Kan extension

f̂ ∗ = lany(C,J)
y(D,K)f

where y(C,J) : C → ĈJ and y(D,K) : D → D̂K are the embedding into sheaves.

Moreover the inverse image part is also related to the left adjoint lextf as follows

Ĉ D̂

ĈJ D̂K

lextf

aKiJ

f̂ ∗

This defines a pseudofunctor

(Sit♭) op TopSh
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Comorphisms of sites and cover-reflection property

Definition

A functor between sites f : (D,K) → (C, J) is said to be cover-reflecting, or also to
be a comorphism of sites, if for any d in D and any J-covering sieve S on f (d), there
is a K -covering sieve R such that f (v) is in S for all u ∈ R.

Again, this can be rephrased, this time with the restriction functor:

Definition

A functor between sites f : (D,K) → (C, J) is cover-reflecting if for any d in D
and any J-covering sieve S on f (d), the restricted sieve f −1(S) on d is K -covering.

(Equivalently, if S contains a sieve lextf R for R a K -covering sieve on d .)

We will denote as Sit♯ the 2-category of sites, comorphisms of sites and transforma-
tions between them.
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Geometric morphism from comorphism of sites

For a comorphism of site F : (D,K) → (C, J), denote as AF : (C, J) → D̂K the
composite aKC(F , 1).

Then AF is a J-continuous flat functor, and it induces a geometric morphism
Sh(AF ) = CF : D̂K → ĈJ whose inverse image is the composite

Ĉ D̂

ĈJ D̂K

restF

aKiJ

C∗
F

This defines a pseudofunctor

(Sit♯) co TopC
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Mixing morphisms and comorphisms ?

Now one may ask whether morphisms and comorphisms may be mixed altogether
into a same 2-dimensional structure:

(Sit♭) op ? (Sit♯) co

Top
Sh C

The problem is that morphisms of sites and comorphisms of sites do not compose
with each other. But there are two way to fix this:

either to arrange them into a double category

either by jointly generalizing them into a notion of distributors between sites.
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A double category of sites



Double categories

Definition (Ehresmann [3])

A double category D is the data of

a class of objects C ,D...

a class of horizontal 1-cells f : C → D

a class of vertical 1-cells F : C −7−→ D

a class of double cells of the form

A B

C D

f

H

p

ϕ K

p
g

subject to the following axioms:

each object C admits both a horizontal and vertical identity 1C and idC

horizontal arrows from a category hD with identities given by horizontal identities

vertical arrows from a category vD with identities given by vertical identities

double cells paste horizontally and vertically

pasting are subject to suited interchange and identity rules.
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Double functors

Definition

A double functor between double categories F : C → D is the data of

a function F : ObC → ObD at the level of objects

a horizontal component hF : hC → hD
a vertical component vF : vC → vD
and for every double cell in C a double cell in D

A B

C D

f

H

p

ϕ K

p

g

FA FB

FC FD

hFf

vFH p Fϕ vFKp

hFg

which are moreover to the suited coherences relative to pasting and identities.
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Examples

The point with double categories is that they allow to consider 2-cells between two
classes of morphisms without requiring them to compose altogether.

Example

The ur-example: the double category Dist whose

objects are categories

horizontal maps are functors

vertical maps are distributors (a.k.a. profunctors)

double cells are natural transformations

But there is a simpler example:

Example

For any 2-category K, there is a lax quintet (resp. oplax quintet) double category
K□

lax (resp. K□
oplax) whose objects are those of K, vertical and horizontal morphisms

are any morphisms in K, and double cells are lax (resp. oplax) squares.

(In fact K□
lax and K□

oplaxthey are the same thing up to a transposition duality)
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Double category of sites

Definition

We define the double category Sit♮lax as having as objects (small generated) sites,
as horizontal arrows morphisms of sites, as vertical arrows comorphisms of sites, and
as a double cell

(A,M) (B, L)

(C, J) (D,K)

f

G

p ϕ K

p
h

a lax squares as below, with f , h morphisms of sites and G ,K comorphisms of sites:

(A,M) (B, L)

(C, J) (D,K)

f

G
ϕ

K

h
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Constructing a double sheafification functor

We want to construct a sheafification double functor

whose horizontal component is the pseudofunctor Sh form morphisms

whose vertical component is the pseudofunctor C for comorphisms

For double cells, we use the canonical constructions of mates: suppose one has a
2-cell of the following form:

A B

C D

f

g
ϕ

k

h

Such a square induces a cross-adjoint square constructed from the composite 2-cell

Â B̂

Ĉ D̂

lextf

ϕrestg

lexth

restk

lextf restg lextf restg resth lexth

restk lexth lextf restf restk lexth

ηh

ϕ restϕ

ϵf
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Sheafification of double-cells

If now one has sites (A,M), (B, L), (C, J) and (D,K), related through a lax square

(A,M) (B, L)

(C, J) (D,K)

f

G
ϕ

K

h

where f , h are morphisms of sites and G ,K comorphisms of sites respectively, then the
sheafification of the previous 2-cell along aL : B̂ → B̂L produces a 2-cell corresponding
to a 2-cell between geometric morphisms

ÂM B̂L

ĈJ D̂K

f̂ ∗

ϕ̂∗
C∗
G

ĥ∗

C∗
K

ÂM B̂L

ĈJ D̂K

CG

ϕ̂

f̂

CK

ĥ

But this is a 2-cell in the lax quintet double category Top□
lax of Grothendieck topoi!

20 / 47



Sheafification as a double functor

Theorem

One has a horizontal contravariant, vertically covariant double functor and join
full-on-objects-embeddings of the categories of sites with morphisms and
comorphisms as the horizontal and vertical categories respectively:

(Sit♭) op Sit♮lax (Sit♯) co

Top□
lax

h

Sh

v

C

In fact one could also define a double category Sit♮oplax with oplax squares, and
construct a double functor Shoplax.

A way to fix this duplication of double cells would be to work at the level of the
double category Top□

relax where lax and oplax squares are subsumed by squares filled by
a natural relation.
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Why a double-categorical structure ?

One may wonder why morphisms and comorphisms arrange in a double category, and
whether this double category is an instance of a special family of double categories.

The better known relational double categories as double categories of profunctors
have a quite different flavour as they are less symmetrical.

Here horizontal and vertical maps are two classes of functors with dual properties,
rather than a class of functors and a class of relations generalizing them.

This reminds a more symmetric kind of double categories, those that arise as double
categories of (co)algebras with lax and colax morphisms for (co)monads !
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Co-algebra and (co)lax morphisms for a copointed endofunctor

Definition

Let K be a 2-category and T : K → K a copointed endo-2-functor, that is,
equipped with a strict natural transformation ε : T ⇒ 1K. A co-algebra for (T , ε) is
the data of a pair (C , γ) with C in K and α a section of the counit

C TC

C

γ

εC

A lax (resp. colax) morphism of co-algebras (C , γ) → (D, δ) is a pair (f , ϕ) with
f : C → D in K and ϕ a 2-cell as on the left (resp. on the right)

C D

TC TD

f

γ δ

Tf

ϕ

C D

TC TD

f

γ δ

Tf

ϕ

whose pasting along the naturality square of the pointer is an identity 2-cell.
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Double category of co-algebras, lax and colax morphisms

Proposition (Paré-Grandis [4])

For any copointed endo-2-functor T , one can form a double category T-coAlg of
strict co-algebras, lax morphisms as horizontal cells, colax morphisms as vertical cells,
and as 2-cell, the lax squares of the form

(A, α) (B, β)

(C , γ) (D, δ)

(f ,ϕ)

(h,η) (k,χ)

(g,κ)

ψ

The double cells of this double category consist hence in 2-cells ψ : gh ⇒ kf
intertwinning the lax and colax morphism structures in the following coherence

B TB

A TA TD

C TC

β

Tkf

α

h

Tf

Th

γ

Tg
η

ϕ

Tψ =

B TB

A D TD

C TC

β

k
Tkf

h

δ

g

γ

Tg

χ

ψ

κ
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Some observations on Grothendieck coverages

Recall that for a Grothendieck coverage on a category C, the set J(c) of J-covering
sieves S ↣よc on an object c form a subposet J(c) of the poset of subobject SubĈよc .

Moreover the poset J(c) is up-closed and contains in particular the maximal sieve.

For each category C and each c in C, define FC(c) the poset of filters of SubĈよc

that is, is objects are filters F ↪→ SubĈ , upsets containing the top element よc .

Now a morphism u : c → c ′ defines at each S ↣よc′ a pullback sieve u∗S →よc .

This defines a morphism of posets u∗ : SubĈ(c
′) → SubĈ(c). If now F is a filter

of SubĈ(c
′), the inverse image

(u∗)−1(F ) = {R ↣よc′ | u
∗R ∈ F}

is a filter of SubĈ(c). Hence we have a morphism of posets

FC(c) FC(c
′)

(u∗)−1
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The category SC

Definition

Define for each category C the category SC as having:

as objects pairs (c,F ) with c an object of C and F a filter of SubĈよc

as morphisms (c,F ) → (c ′,F ′) morphisms u : c → c ′ such that

F ′ ≤ (u∗)−1(F )

which amounts to asking that for any R ↣よc′ in F ′ one has u∗R ∈ F , as
visualized by the condition that u∗ restricts between F ′ and F seen as subposets

SubĈよc′ SubĈよc

F ′ F

u∗

This category is fibered over C with posetal fibers FC(c) at each c

SC CπC
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2-Functoriality of S

For a functor f : C → D, one can define for each S ↣よc in C the sieve

lextf S = {v : d → f (c) | ∃u : c ′ → c ∈ S such that v ≤ f (u)}

For a given filter F of SubĈよc , one can consider the filter lextf [F ] generated
from the set of sieves of the form lextf (S) for S in F . This filter contains all sieves
R →よf (c) that contain a sieve of the form lextf (S) for S in F .

If now one has a morphism u : c → c ′ in C, then one has a morphism in SD

(f (c), lextf [F ]) (f (c ′), lextf [F
′])fu

Hence one just has to defines the functor Sf : SC → SD sending (c,F ) to the pair
(f (c), lextf [F ]).
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The copointed endo-2-functor S

Hence this construction is functorial on Cat: we have an endo-2-functor

Cat CatS

Moreover this endofunctor is copointed through the projections πC : SC → C, whose
naturality produce morphisms of fibrations

SC SD

C D

Sf

πC πD

f

In fact this extends nicely to an endo-2-functor on Lex.
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Coverages as co-algebra structure

Proposition

A co-algebra structure on C for S is a coverage on C.

A co-algebra defines a section J : C → SC of πC . This means that for any c the
object J(c) is of the form (c, J(c)) where J(c) is a filter of SubĈよc , that is, consists
of a collection of sieve such that よc is in J(c), J(c) is up-closed for the inclusion.

Moreover functoriality says that for any u : c → c ′, one has a restriction

J(c) SubĈよc

J(c ′) SubĈよc′

u∗

expressing that for any R in J(c ′) the pullback sieve u∗R is in J(c).

This is exactly what a coverage is!
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Morphisms as lax morphisms of co-algebras

Proposition

A functor f : C → D is a lax morphism of co-algebras iff it is cover-preserving

Suppose that one has a 2-cell

C D

SC SD

f

J K

Sf

ϕ

This consists for each c in C of a morphism (f (c), lextf [J(c)]) → (f (c),K(f (c))),
with the same supporting object f (c): but as SD has posetal fibers, the existence of
such a 2-cell amounts to an inequality between subobjects

lextf [J(c)] ≤ K(f (c))

which means that if a sieve R contains the image of a sieve of J(c), then it is in
K(f (c)). Hence in particular for any S in J(c), lextf S is in K(f (c)), which makes f
a cover-preserving functor (C, J) → (D,K).
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Comorphisms as colax morphisms of co-algebras

Proposition

A functor f : C → D is a colax morphism of co-algebras iff it is cover-reflecting

Suppose that one has a 2-cell

C D

SC SD

f

J K

Sf

ϕ

This consists for each c in C of a morphism (f (c),K(f (c))) → (f (c), lextf [J(c)]),
with the same supporting object f (c): but as SD has posetal fibers, the existence of
such a 2-cell amounts to an inequality between subobjects

K(f (c)) ≤ lextf [J(c)]

which means any sieve R in K(f (c)) contains a sieve of the form lextf S for some S
in J(c), which makes f a cover-reflecting functor (C, J) → (D,K).
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Further double categorical aspects and questions

There are still several questions regarding this double categorical approach:

How localness axiom of Grothendieck topologies can be expressed with S ?

Is S actually a comonad, and so, what is the topological meaning of the
additional coherence condition of its algebras ?

The exact interaction with flatness should be clarified to exhibit morphisms of
sites as lax morphisms of co-algebras.

There are dualities as in [2] allowing to construct morphisms from comorphisms
and conversely; in particular there is a comma constructions which is a tabulator
in Sit♮. What can be said about other double categorical constructions ?

Those duality produce double cells akin to conjoint cells in Sit♮, but they
become companion pairs in Top.

It is known since [6] that Top is bilocalization of Sit♭ at dense morphisms of
sites. We expect this to extend to a double localization of Sit♮.
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Continuous distributors



Joint generalization of morphisms and comorphisms ?

There is another way to mix morphisms and comorphisms, this time as two instances
of a same notion of 1-cells.

It also relates to the imperfect correspondence of (co)morphisms of sites with geo-
metric morphisms:

For two fixed sites (C, J), (D,K), there are geometric morphisms D̂K → ĈJ that are
not induced from morphism of sites (C, J) → (D,K), for the inverse image may not
restrict to a functor.

But it always restricts to a distributor, and we may ask what flatness and continuity
mean for distributors.
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Distributors and heteromorphisms

Definition

A distributor (a.k.a. profunctor) H : C ↬ D is a functor D op × C → Set.

For a distributors H : C ↬ D, élements of the sets H(d , c) will be called heteromor-
phisms and denoted as generalized morphisms across categories

b ca

For v : d ′ → d and u : c → c ′, H(v , c) and H(d , u) act as pre/post composition.

Example

Any functor F : C → D induces two representable distributors:

the right representable D(1,F ) : C ↬ D sending (d , c) to D(d ,F (c)),

the left representable D(F , 1) : D ↬ C sending (c, d) to D(F (c), d).

The composite of distributors is computed at a pair (e, c) as the coend

H ⊗ K(e, c) =

∫ d∈D
H(d , c)× K(e, d)
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Extension along distributors

Distributors induce functors between presheaf categories:

Dist[C,D] = Cat[D op × C,Set]

≃ Cat[C, D̂]

≃ coCont[Ĉ, D̂]

where a distributor H : C ↬ D is sent successively to

the functor Ĥ : C → D̂ sending c to the presheaf H(−, c) on D
then to the cocontinuous functor lextH : Ĉ → D̂ obtained through the left Kan
extension lextH = lanよC Ĥ which is computed at an object d as the coend:

lextH(X )(d) =

∫ c∈C
H(d , c)× X (c)

Moreover lextH possesses a right adjoint restH = lanHよD computed as

restH(Y )(c) = D̂[Ĥ(c),Y ]
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Extension along representable

The extensions interact nicely with representables, in a way that will help unify
cover-preservation and cover-reflection:

Proposition

For f : C → D, the right representable D(1, f ) : C ↬ D corresponds with the right
nerve and its left extension coincides with the left extension functor along f :

lextD(1,f ) = lextf

But we have a funny twist for the other representable:

Proposition

For f : D → C, the left representable C(f , 1) : C ↬ D corresponds with the left
nerve, but its left extension coincides with the restriction functor along f

lextC(f ,1) = restf

As we will see, those formulas will play an important role when unifying cover-
preserving and cover-lifting condition into a same condition for distributors.
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Benabou flatness

Definition (Benabou [1])

Then a distributor H : C ↬ D is said to be representably flat if for each d the
category d ↓ H is cofiltered.

This generalizes exactly the usual notion of representable flatness:

d ↓ H is non empty, so there is an heteromorphism d ⇝ c

for any diagram on the left is the is a span as on the right

c

d

c ′

x

x′

c

d c ′′

c ′

x

x′′

x′

u

u′

and for any diagram as below there is u′′ : c ′′ → c with uu′′ = u′u′′ and x ′′ such
that u′′(x ′′) = x :

c ′

d c

x′

x

u u′

c ′

d c

c ′′

x′

x

x′′

u u′

u′′
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Flat distributors beget geometric morphisms between presheaf topoi

Proposition (Benabou [1])

For a distributor H : C ↬ D the following are equivalent

H is representably flat

the left extension lextH : Ĉ → D̂ is lex

the pair Ĥ = ( lextH , restH) : D̂ → Ĉ is a geometric morphism

Proposition

Conversely, any geometric morphism D̂ → Ĉ is induced by a flat distributor.

Indeed, f is induced by a flat functor f : C → D̂ and one just take Hf : C ↬ D
sending (d , c) to the evaluation f (c)(d).

Proposition

The pseudofunctor (̂−) : FlatDist op → Top is pseudofully faithful, that is, for any
C,D we have an equivalence of categories

FlatDist[C,D] ≃ Top[D̂, Ĉ]

38 / 47



Continuity conditions ?

Continuity conditions for distributors have been not so much investigated until now,
except in term of bidense morphisms in Johnstone and Wraith “Algebraic theories in
toposes” [5].

Here we would like to give nice joint generalization of cover-preservation, cover-
reflection, and continuity for distributors.

To extract such a notion, let us re-express cover-preservation and reflection in terms
of heteromorphisms associated to representable distributors.
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Extension of sieves along distributors

Let H : C ↬ D be a distributor between sites (C, J) and (D,K).
Then the left extension of a sieve S ↣よc returns at any object d the coend

lextH(S)(d) =

∫ c′∈C
H(d , c ′)× S(c ′)

which is exactly the set of heteromorphisms factorizing through S{
a ∈ H(d , c) | ∃u′ : c ′ → c ∈ S and ∃a′ ∈ H(d , c ′) such that

c ′

d c
u′

a′

a

}

This exhibits lextH(S) as a subobject of the presheaf Ĥ(c) in D̂.

Though this is not properly speaking a sieve, it is locally a sieve !
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Extension of sieves along distributors

Indeed, by Yoneda lemma, an heteromorphism a ∈ H(d , c) is a transformation

a :よd → Ĥ(c), along which the pullback of the extension produces a sieve on d

a∗ lextHS lextHS

よd Ĥ(c)

⌟

a

Concretely, this object a∗ lextHS returns at an object d ′ of D the set{
v : d ′ → d | ∃u : c ′ → c ∈ S , and ∃a′ ∈ H(d ′, c ′) such that

d ′ c ′

d c

a′

v u′

a

}

Now this defines a sieve on d in D!
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Cover-distributing property

Definition

A distributor H : C ↬ D between sites (C, J) and (D,K) will be said to be
cover-distributing if for any pair (d , c), any heteromorphism a ∈ H(d , c) and any
J-covering sieve S on c, the sieve a∗ lextH(S) is K -covering on d .

This conditions subsumes both cover preservation and cover reflection:

Proposition

Let (C, J) and (D,K) be two sites; then:

a functor f : C → D is cover-preserving iff D(1, f ) : C ↬ D is cover-distributing

a functor f : D → C is cover-reflecting iff C(f , 1) : C ↬ D is cover-distributing.
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Cover-distribution subsumes cover-preservation and reflection

For the cover-preservation: use that lextD(1,f ) = lextf and the fact that an hetero-
morphism a ∈ D(1, f (c)) simply is a morphism a : d → f (c) in D:

if f is cover-preserving, for each J-covering sieve S the sieve lextf S is
K -covering, and so is a∗ lextf S so D(1, f ) is cover-distributing.

if D(1, f ) is cover-distributing, apply the case a = 1f (c).

For the cover-reflection: an heteromorphism a ∈ C(f , 1) is a morphism a : f (d) → c
in C. Then for any J-sieve S on c, the pullback sieve a∗S is in J(f (d)), and then
observe that a∗ lextC(f ,1)S = f −1(a∗S):

if f is cover-reflecting, each f −1(a∗S) must be K -covering

if C(f , 1) is cover-distributing, then apply to the case a = 1f (d).
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Combining cover-distribution and flatness

Definition

A distributor H : (C, J)↬ (D,K) will be said to be (J,K)-flat if:

H is cover-distributing

For any d of D, the following sieve is K -covering

{v : d ′ → d | ∃c ∈ C,H(d ′, c) ̸= ∅}

For any c, c ′, d and a ∈ H(d , c), a′ ∈ H(d , c ′), the following sieve is K -covering{
v : d ′ → d |

∃u : c ′′ → c,
∃u′ : c ′′ → c ′

∃a′′ ∈ H(d ′, c ′′)
such that

d ′ c ′′ c

d c ′

a′′

v

u

a u′

a′

}

For any u, u′ : c ′ ⇒ c in C, d of D and a ∈ H(d , c ′) with
H(d , u)(a) = H(d , u′)(a), the following sieve is K -covering:{

v : d ′ → d | ∃w : c ′′ → c ′

∃a′ ∈ H(d ′, c ′′)
such that

d ′ c ′′

d c ′ c

a′

v w uw=u′w

a

u

u′

}
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Comparison with Johnstone-Wraith continuity

This definition is more or less equivalent to the following:

Definition (Johnstone-Wraith [5])

A distributor C ↬ D is Johnstone-Wraith-flat if for any finite diagram
(Ei )i∈I : I → Ĉ and any J-bidense morphism u : E → limi∈I Ei , the induced map

lextH(u) : lextH(E) → lextH(limi∈I Ei ) is K -bidense in D̂.

Then we have an adjunction between homcategories:

Proposition

Let (C, J) and (D,K) be two small generated sites; then one has an adjunction
between geometric morphisms and (J,K)-flat ditributors

Top[D̂K , ĈJ ] Dist(J,K)(C,D)

H

(̂−)

⊣

where moreover the functor H is fully faithful.
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Continuous distributors correspond to geometric morphisms

The hindrance to an equivalence is the problem that sheafification aK may identify
distributors. This can be fixed by adding a condition of continuity:

Definition

A distributor H : (C, J)↬ (D,K) will be said to be (J,K)-continuous if it is

(J,K)-flat and satisfies that Ĥ : C → D̂ takes values in the sheaf topos D̂K .

Denote as ContDist[(C, J), (D,K)] the category of (J,K)-continuous distributors.

Theorem

Any (J,K)-continuous distributor induces faithfully a J-continuous functor

lextH : C → D̂K so we have an equivalence

Top[D̂K , ĈJ ] ≃ ContDist[(C, J), (D,K)]
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Reconciliating morphisms and comorphisms

Denote as Sit
W
the bicategory of sites, continuous distributors and transformations.

Theorem

The left and right representable construction define pseudofunctors from Sit♭ and
Sit♯ into Sit

W
, while the construction above defines a fully faithful embedding

(Sit♭) op (Sit
W
) op (Sit♯) co

Top

R

Sh
(̂−)

L

C
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Thank you for your attention !
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