2-categorical constructions on classifying toposes

Marco Panzeri (University of Insubria) joint work with O. Caramello

September 11, 2024

Toposes in Mondovì

イロト イ母 トイヨ トイヨー

 Ω

Marco Panzeri (University of Insubria) joint work with O. Caramello [2-categorical constructions on classifying toposes](#page-21-0)

Introduction

- In this presentation we provide logical descriptions of some fundamental constructions in the 2-category of Grothendieck toposes **GrTop**.
- More specifically, we describe geometric theories classified by some weighted limits of classifying toposes and morphisms between them induced by interpretations.
- As we shall see, the logical approach allows us to describe weighted limits of toposes in a simpler way than through the geometric perspective addressed in the literature.
- More specifically, in the literature some weighted limits of toposes are presented as categories of sheaves on some site (C, J) , where J is a Grothendieck topology generated by some covering families in C , i.e. the finest Grothendieck topology J for which these families are J-covering. In general, it is not simple to describe all the covering sieves for such a Grothendieck topology.

 $2Q$

Definition

The comma topos of a pair of geometric morphisms $f: \mathcal{F} \to \mathcal{E}$ and $g: \mathcal{G} \to \mathcal{E}$ is a topos (f/g) which is universally equipped with a square of the form

$$
\begin{array}{ccc}\n(f/g) & \xrightarrow{\pi''} & G \\
\pi' & \longrightarrow & \downarrow g \\
\mathcal{F} & \longrightarrow & \mathcal{E}\n\end{array}
$$

■ Under the assumption that $f: \mathcal{F} \to \mathcal{E}$ (resp. $g: \mathcal{G} \to \mathcal{E}$) is induced by a morphism of cartesian sites $p: (C, J) \rightarrow (C', J')$ (resp.
 $q: (C, J) \rightarrow (C'', J'')$) a presentation of the comma top $q: (C, J) \rightarrow (C'', J'')$ a presentation of the comma topos (f/g) as a category of sheaves on a site (T, J_0) was originally introduced by I category of sheaves on a site (D, J_D) was originally introduced by Deligne and subsequently studied by other mathematicians including Laumon, Abbes and Gros.

K ロ ト K 母 ト K ヨ ト K ヨ ト

Example: comma toposes

• The category $\mathcal D$ is defined in the following way.

- Objects: An object, denoted by $(d \rightarrow c \leftarrow e)$, consists of an object c in C, an arrow $d \to p(c)$ in C' and an arrow $e \to q(c)$ in C''
An arrow $(d' \to c' \leftarrow e') \to (d \to c \leftarrow e)$ consists of three
	- Arrows: An arrow $(d' \rightarrow c' \leftarrow e') \rightarrow (d \rightarrow c \leftarrow e)$ consists of three arrows $c \to c'$, $d \to d'$ and $e \to e'$ in C, C' and C''
respectively, such that the obvious squares community respectively, such that the obvious squares commute.
		- The topology J_{Ω} is generated by covering families
			- ${(d_i \rightarrow c_i \leftarrow e_i) \rightarrow (d \rightarrow c \leftarrow e)}_{i \in I}$ of the following three types
				- 1 $e_i = e$, $c_i = c$ for every *i*, and $\{d_i \rightarrow d\}_{i \in I}$ is *J'*-covering;
2 $d_i d_i c_i = c$ for every *i*, and $\{e_i \rightarrow e\}_{i \in I}$ is *J''*-covering;
				- 2 $d_i = d$, $c_i = c$ for every i, and $\{e_i \rightarrow e\}_{i \in I}$ is J''-covering;
3) I is the singleton $f' \cdot d' = d$ and the arrow $e' \rightarrow e \times d$
				- **3** I is the singleton {'}, $d' = d$ and the arrow $e' \rightarrow e \times_{q(c)} q(c')$ is an isomorphism.

つへへ

• We provide a simpler presentation of the topos (f/g) using the logical perspective. More precisely, we assume that $f: \mathcal{F} \to \mathcal{E}$ (resp. $q: G \to \mathcal{E}$) is induced by a morphism of syntactic sites and describe a theory classified by the topos (f/g) (f/g) (f/g) [.](#page-0-0)

The notion of classifying topos

Definition

A classifyng topos for a geometric theory $\mathbb T$ is a Grothendieck topos $\mathcal{E}_{\mathbb T}$ such that for every topos H there exists an equivalence of categories

 $\textbf{GrTop}(\mathcal{H}, \mathcal{E}_{\mathbb{T}}) \cong \mathbb{T}$ -Mod (\mathcal{H})

which is natural in H .

Theorem (A. Joyal, G. Reyes and M. Makkai)

- \bullet Every geometric theory $\mathbb T$ admits a classifying topos.
- **Every topos** $\text{Sh}(C, J)$ **is the classifyng topos of some theory** T **.**

Sketch

- \bullet Let T be a geometric theory. The category **Sh**(C_T , J_T) of sheaves over the syntactic site (C_T, J_T) of T is a classifying topos for T .
- \bullet By Diaconescu's equivalence we have, for every Grothendieck topos H , an equivalence of categories

 $\mathsf{GrTop}(\mathcal{H},\mathsf{Sh}(\mathcal{C},J))\cong \mathsf{Flat}_J(\mathcal{C},\mathcal{H}),$

 QQ

where $Flat_J(C, H)$ denotes the category of J-continuous flat functors.

Weighted limit of toposes

Definition

A weighted diagram of type J valued in the 2-category **GrTop** is a pair of (2)-functors (D, ^W) of the form:

- \bullet A weighted cone L over a weighted diagram (D, W) valued in the 2-category **GrTop** consists of a topos ^H, which is called vertex of the cone, endowed with a pseudo-natural transformation W [⇒] **GrTop**(H, ^D(−)).
- \bullet A weighted limit over a weighted diagram (D, W) of type $\mathcal T$ valued in GrTop is a cone L over (D, W) that satisfies the property to be universal, i.e. composition with L is, for every topos H , one half of an equivalence of categories of the form

 $\mathsf{GrTop}(\mathcal{H}, \mathcal{E}) \cong \mathsf{Cone}(\mathcal{H}, (D, W)),$

nar

where $\mathcal E$ denotes the vertex of L and $Cone(\mathcal H,(D,W))$ denotes the category of cones over the [w](#page-6-0)[e](#page-6-0)ighted diagram (D, W) (D, W) (D, W) w[it](#page-4-0)[h v](#page-5-0)e[rte](#page-0-0)[x](#page-21-0) H [.](#page-0-0)

Lemma (M. Kelly, R. Street)

If a 2-category $\mathcal A$ has finite (resp. small) products, equalizers and cotensors with **²**, then it has all finite (resp. small) weighted limits, *i.e.* those weighted limits whose type $\mathcal I$ is a finite category and the values of the weighting W are finite categories.

Lemma (Theorem B4.1.4 [\[2\]](#page-21-1))

The 2-category **GrTop** has cotensors with **²**.

Theorem ([\[2\]](#page-21-1))

The 2-category of Grothendieck toposes has all finite (resp. small) weighted limits.

イロト イ母 トイヨ トイヨ トー

Interpretation of a theory into another one

Definition (O. Caramello)

1 An interpretation of a geometric theory $\mathbb T$ into another geometric theory $\mathbb T'$ is a morphism of sites $(C_T, J_T) \rightarrow (C_{T'}, J_{T'})$.

2 A geometric theory \mathbb{T}' is a geometric expansion of a geometric theory \mathbb{T} , if we can obtain \mathbb{T}' form \mathbb{T} by adding sorts function symbols or relations we can obtain \mathbb{T}' form \mathbb{T} by adding sorts, function symbols or relations symbols to the signature of $\mathbb T$ and geometric axioms over the resulting extended signature.

Remark

Every geometric expansion \mathbb{T}' of a theory \mathbb{T} defines a canonical interpretation $C_{\mathbb{T}} \to C_{\mathbb{T}'}$.

Moreover, a morphism of sites $p: (C_T, J_T) \to (C_{T'}, J_{T'})$ induces a geometric morphism $p_{\mathbb{T}}^{T'} : \mathsf{Sh}(C_{\mathbb{T}'}, J_{\mathbb{T}'}) \to \mathsf{Sh}(C_{\mathbb{T}}, J_{\mathbb{T}})$ such that the diagram

$$
\begin{array}{ccc}C_{\mathbb{T}}&\stackrel{\rho}{\longrightarrow}C_{\mathbb{T}'}\\ \downarrow_{\mathbb{T}}&\downarrow_{\mathbb{T}'}\\ \mathrm{Sh}(C_{\mathbb{T}},J_{\mathbb{T}})&\stackrel{\rho_{\mathbb{T}}^{T^{*+}}}{\longrightarrow}\mathrm{Sh}(C_{\mathbb{T}'},J_{\mathbb{T}'})\\ \end{array}
$$

 200

commutes.

The general construction

- \bullet Let (D, W) be a small weighted diagram of type $\mathcal J$ valued in the 2-category **GrTop**. We suppose that for every object *i* in \mathcal{T} the topos $D(i)$ is the classifying topos of some geometric theory \mathbb{T}_i and for every arrow $s : i \rightarrow j$ in $\mathcal J$ the geometric morphism $D(\boldsymbol{\mathrm{s}})\colon \mathcal E_{\mathbb T_i} \to \mathcal E_{\mathbb T_j}$ is induced by an interpretation of \mathbb{T}_j into \mathbb{T}_i , i.e. a morphism of sites $(C_{\mathbb{T}_j}, J_{\mathbb{T}_j}) \to (C_{\mathbb{T}_i}, J_{\mathbb{T}_j})$ between the respective syntactic sites.
- **If we assume that the vertex of the weighted limit over some weighted** diagram (D, W) as before is a classifying topos of some geometric theory T, i.e. $\text{Lim}_{\mathcal{I}}(D, W) \cong \mathcal{E}_T$, then the equivalence of categories

 $\mathbb{T}\text{-}Mod(\mathcal{H}) \cong \text{GrTop}(\mathcal{H}, \mathcal{E}_{\mathbb{T}}) \cong \text{Cone}(\mathcal{H}, (D, W))$

allows us to regard, up to equivalence of categories, a $\mathbb T$ -model in $\mathcal H$ as weighted cone over (D, W) with vertex H .

 \bullet We describe a theory $\mathbb T$ classified by the vertex of (D, W) as a geometric expansion of every \mathbb{T}_i .

K ロ ト K 母 ト K ヨ ト K ヨ ト

Some examples of (weighted) limits

- In the rest of this presentation we specialize and adapt this general construction to the notable cases of comma toposes, fibred products of toposes and small limits of toposes.
- In a forthcoming paper
	- we specialize and adapt this general construction to the cases of
		- inserters of a pair of geometric morphisms,
		- inverters of a geometric transformation,
		- cotensors with a (small) category,
		- equifiers of a pair of geometric transformations,
		- ⁵ descent objects in **GrTop**,
	- we provide a syntactic description of a general small or finite weighted limit of classifying toposes.

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Comma toposes: from the universal property to the semantics

• Let $f: \mathcal{E}_{T''} \to \mathcal{E}_T$ and $g: \mathcal{E}_{T'} \to \mathcal{E}_T$ be geometric morphisms. The (1-dim)-universal property of the comma topos (f/q) states that for every topos H with a pair of geometric morphisms $m: \mathcal{H} \to \mathcal{E}_{T'}$ and $n: \mathcal{H} \to \mathcal{E}_{T''}$ endowed with a natural transformation $\omega: f \circ n \Rightarrow g \circ m$, there exists an unique, up to isomorphism, geometric morphism $h: \mathcal{H} \rightarrow (f/g)$ and a pair of geometric 2-isomorphisms $β'' : π'' ∘ h ≅ n$ and $β' : π' ∘ h ≅ m$ such that $ω = (f ∘ β'')(α ∘ h)(α ∘ β''')$ $\omega = (f \circ \beta'')(a \circ h)(g \circ \beta'')$

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

 \bullet By the (1-dim)universal property of the comma topos (f/g) we deduce that a \mathbb{T}'' -model H in H, where \mathbb{T}'' is a theory classified by (f/g) , is up to isomorphisms a triplet (M, N, n) where M is a \mathbb{T}' -model in H, N is a isomorphisms, a triplet (M, N, η) , where M is a \mathbb{T}'
 \mathbb{T}' -model in H and $n: N^f \to M^g$ is an homomorp isomorphisms, a triplet (M, N, η) , where M is a \mathbb{T}' -model in \mathcal{H} , N is a
 \mathbb{T}' -model in \mathcal{H} and $\eta \colon N^f_{\mathbb{T}} \to M^g_{\mathbb{T}}$ is an homomorphism of \mathbb{T} -models (with the
notation N^f (risp, M^g), we me notation $\mathsf{N}_{\mathbb{T}}^{\ell}$ (risp. $\mathsf{M}_{\mathbb{T}}^{g}$), we mean the $\mathbb{T}\text{-}$ model which corresponds to the geometric morphism $f \circ n$ (resp. $g \circ m$)).

 Ω

A theory classified by a comma topos

Proposition

Let

$$
(f/g) \xrightarrow{\pi''} \mathcal{E}_{\mathbb{T}''}
$$

$$
\pi' \downarrow \qquad \swarrow \qquad \downarrow f
$$

$$
\mathcal{E}_{\mathbb{T}'} \xrightarrow{\pi''} \mathcal{E}_{\mathbb{T}}
$$

be the comma topos of a pair of geometric morphisms f, g: $\mathcal{E}_{T'} \to \mathcal{E}_T$. We assume that f (resp. g) is induced by some interpretation $p: C_{\mathbb{T}} \to C_{\mathbb{T}'}$ (resp. $q: C_{\mathbb{T}} \to C_{\mathbb{T}''}$). We consider

- the signature Σ'' which is obtained by adding to Σ' $\bigcup \Sigma''$ a relation symbol $R^A \rightarrow A^{1p}, \ldots, A^{np}, A^{1q}, \ldots, A^{mq}$ for every sort A in Σ , where the sorts A^{1p} and A^{1q} and A^{mq} are those which arise in the context of A^{1p}, \ldots, A^{np} (resp. A^{1q}, \ldots, A^{mq}) are those which arise in the context of A^{1p}, \ldots, A^{np} (resp. A^{1q}, \ldots, A^{mq}) are those which a
 $p({x^A}.T) = {x^{A^p}.{\psi^A}}$ (resp. $q({x^A}.T) = {x^{A^q}.{\varphi^A}}$);
- the theory \mathbb{T}''' built over Σ''' which is obtained by adding to $\mathbb{T}'\coprod \mathbb{T}''$ the axioms:

イロト イ母 トイヨ トイヨ トー

Þ

A theory classified by a comma topos

Proposition

1 for every sort A in Σ , $\frac{X''}{Y}$, $\frac{X''}{Y}$, $\frac{X''}{Y}$, $\frac{X''}{Y}$ $A \vdash_{\underline{x}^{A^p}} (\exists \underline{x}^{A^q}) R^A$ $R^A \vdash_{\underline{x}^{A^p}, \underline{x}^{A^q}} \psi^A \wedge \varphi^A$ $R^A \wedge R(\underline{x}^{A^q}|\underline{x'}^{A^q}) \vdash_{\underline{x}^{A^p}\underline{x}^{A^q},\underline{x'}^{A^q}} \underline{x}^{A^q} = \underline{x'}^{A^q};$ 2 for every function symbol $f: A^1, \ldots, A^n \rightarrow B$ in Σ , $\top \vdash_{\underline{x}^{A^{1p}, \dots, \underline{x}^{A^{np}}, \underline{x}^{B^q}}} ((\exists \underline{x}^{B^p}) \theta_f^p \wedge R^B) =$ $((\exists x^{A^{1q}}, \ldots, x^{A^{nq}})R^{A^{1}} \wedge \cdots \wedge R^{A^{n}} \wedge \theta_{f}^{q}),$ where θ_i^p (resp. θ_i^q) is a representative of the arrow $p([f(x^{A^1}, \dots x^{A^n}) = y^B])$ (resp. $q([f(x^{A^1}, \dots x^{A^n}) = y^B]),$

イロト イ母 トイラ トイラトー

э

Proposition

3 for every relation symbol $R \to A^1, \dots A^n$ in Σ ,

$$
((\exists \underline{x}^{A^{1p}}, \dots, \underline{x}^{A^{np}})\theta^p_A \wedge R^{A^1} \wedge \dots \wedge R^{A^n}) \vdash_{\underline{x}^{A^{1p}, \dots, \underline{x}^{A^{np}}, \underline{x}^{A^{1q}, \dots, \underline{x}^{A^{nq}}}} \theta^q_B,
$$

K ロ ト K 母 ト K ヨ ト K ヨ ト

 QQ

where θ_R^q (resp. θ_R^p) is a formula which presents the subobject
 $\epsilon^{(ID(\mu A^1 \ldots \mu A^n))}$ (resp. $\epsilon^{(ID(\mu A^1 \ldots \mu A^n))}$) $q([R(x^{A^1}, \dots x^{A^n})])$ (resp. $p([R(x^{A^1}, \dots x^{A^n})])$).

Then T''' is a theory classified by the topos (f/g) .

A theory classified by a fibred product of toposes

• Let the diagram

$$
\begin{array}{ccccc} \mathcal{E}_{\mathbb{T}'} \times_{\mathcal{E}_{\mathbb{T}}} \mathcal{E}_{\mathbb{T}''} & \xrightarrow{\pi''} & \mathcal{E}_{\mathbb{T}''} \\ & & \pi' \!\!\!\!\! \downarrow & & \downarrow \!\!\!\!\! \downarrow & & \downarrow \!\!\!\! \end{array}
$$

be a pullback in **GrTop**, where ^f (risp. ^g) is induced by some interpretation $p: C_{\mathbb{T}} \to C_{\mathbb{T}'}$ (risp. $q: C_{\mathbb{T}} \to C_{\mathbb{T}''}$).

- We can describe a theory \mathbb{T}'''' classified by the fibred product $\mathcal{E}_{\mathbb{T}'} \times_{\mathcal{E}_{\mathbb{T}}} \mathcal{E}_{\mathbb{T}''}$ as a quotient of the theory \mathbb{T}'' classified by the comma topos (f/g)
described in the previous proposition, Indeed, by the universal prop described in the previous proposition. Indeed, by the universal property of our fibred product we deduce that a \mathbb{T}''' -model H in a topos $\mathcal H$ is, up to isomorphisms, a triplet (M, N, η) , where M is a \mathbb{T}' -model in H, N is a \mathbb{T}' -model in H and $n: M^f \to M^g$ is an isomorphism of \mathbb{T} -models \mathbb{T}'' -model in H and $\eta \colon \mathsf{N}^{\mathsf{f}}_{\mathbb{T}} \to \mathsf{M}^{\mathsf{g}}_{\mathbb{T}}$ is an isomorphism of \mathbb{T} -models.
- By what we have just said, we can describe a theory classified by the topos $\mathcal{E}_{\mathbb{T}'} \times_{\mathcal{E}_{\mathbb{T}}} \mathcal{E}_{\mathbb{T}''}$ by adding to the theory \mathbb{T}''' of the previous proposition the following axioms:

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

A theory classified by a fibred product of toposes

 \bullet for every sort A in Σ ,

$$
\varphi^A \vdash_{\underline{x}^{A^q}} (\exists \underline{x}^{A^p}) R_A(\underline{x}^{A^p}, \underline{x}^{A^q})
$$

and

$$
R_A(\underline{x}^{A^p}, \underline{x}^{A^q}) \wedge R_A(\underline{x'}^{A^p}, \underline{x}^{A^q}) \vdash_{\underline{x}^{A^p}, \underline{x'}^{A^p}, \underline{x}^{A^q}} \underline{x}^{A^p} = \underline{x'}^{A^p},
$$

2 for every relation symbol $R \to A^1, \ldots, A^n$ in Σ ,

$$
((\exists(\underline{x}^{A^{1p}},\ldots,\underline{x}^{A^{np}})\theta^q_R\wedge R_{A^1}\wedge\cdots\wedge R_{A^n}))\vdash_{\underline{x}^{A^{1p}},\ldots,\underline{x}^{A^{np}},\underline{x}^{A^{1q}},\ldots,\underline{x}^{A^{nq}}}\theta^p_R,
$$

イロト イ押ト イヨト イヨト

 QQ

where θ^p_H $R\over R$ is a formula which presents the subobject $p([R(x^{A^1}, \dots x^{A^n})]).$

Limit of toposes: from the universal property to the semantics

• Let $D: I \to$ GrTop be a small diagram such that every topos $D(i)$ is a classifying topos of a theory \mathbb{T}_i . The universal property of the limit $f := I$ im D can be expressed as follows: for every topos H we b $\mathcal{L} := \text{Lim}_i$ D can be expressed as follows: for every topos H we have an equivalence of categories

$$
\text{GrTop}(\mathcal{H},\mathcal{L})\cong\text{Cone}(\mathcal{H},(D)).
$$

If T is a theory classified by L, then a T-model H in a topos H can be regarded as a cone of ^D, i.e. a diagram in **GrTop** of the form

 Ω

● By the universal property of classifying toposes we can regard such a cone as a collection $\{H^i\}_{i\in ob(I)}$, where H^i is a \mathbb{T}_i -model in H, such that for every
arrow s: $i \to i$ in T there exists an isomorphism $\overline{\alpha}$; $H^i \to H^i$ of T-model arrow $s : i \to j$ in *I* there exists an isomorphism $\overline{\alpha_s} : H^i_{\Gamma_i} \to H^j$ of \mathbb{T}_j -models in $\mathcal H,$ $\mathcal H,$ $\mathcal H,$ where $H^i_{\mathbb T_j}$ is the model that corresponds to $D(\boldsymbol{\varsigma})\circ h_i.$ $D(\boldsymbol{\varsigma})\circ h_i.$ $D(\boldsymbol{\varsigma})\circ h_i.$ $D(\boldsymbol{\varsigma})\circ h_i.$ $D(\boldsymbol{\varsigma})\circ h_i.$

Proposition

Let $D: I \to$ GrTop be a small diagram such that for every object i in I we have $D(i) = \mathcal{E}_{\mathbb{T}_i}$ and for every arrow $s: i \rightarrow j$ in \mathcal{J} the geometric morphism $D(s) \colon \mathcal{E}_{\mathbb{T}_I} \to \mathcal{E}_{\mathbb{T}_I}$ is induced by an interpretation $p_s \colon \mathcal{C}_{\mathbb{T}_I} \to \mathcal{C}_{\mathbb{T}_I}.$ We consider We consider

- **the signature** Σ **that is obtained by adding for every arrow s: i** \rightarrow **j in I and** every sort A in Σ_j a relation symbol $R_A^s \to A_1', \ldots, A_n', A_j$ to $\coprod_i \Sigma_i$, where $A_i' = A_i'$ are sorts which arise in the context of the object A_1', \ldots, A_n' are sorts which arise in the context of the object
p. $((x^A \top) - (x^{A'}, y^{A'})$ in C_{τ} and for every object i in T the in $p_s({x^A},\tau) = {\underline{x^A}',\psi^A}$ in C_{τ_i} , and for every object i in *I* the notation B_i denotes the embedding in $IL\Sigma$, of some sort B in Σ . denotes the embedding in $\prod_i \Sigma_i$ of some sort B in Σ_i ;
- the theory $\mathbb T$ built on the signature Σ that is obtained by adding to $\coprod_i \mathbb T_i$ the axioms

イロト イ母 トイヨ トイヨ トー

つのへ

A theory classified by a limit of toposes

Proposition

1 for every arrow s: $i \rightarrow j$ in I and every sort A in Σ_i , \overline{a} ψ $A^A_{i} \vdash_{\underline{x}^{A'_{i}}} (\exists x^{A_{j}}) R^s_{A},$ $R_A^s \vdash_{\underline{x}^{A'_i}, x^{A_j}} \psi_i^A$ $R_{\rm A}^{\rm s} \wedge R_{\rm A}^{\rm s} [x^{A_i} | {x'}^{A_i}] \vdash_{\underline{x}^{A_i'}, x^{A_j}, x'}^{A_j, x^{A_i}} x^{A_i} = {x'}^{A_i}$, ⊤ ⊦ $_{x^{A_j}}$ (∃ $\underline{x}^{A'_i}$) R^s_A $R_{\mathcal{A}}^{s}(\underline{x}^{\mathcal{A}'_i},x^{\mathcal{A}_j}) \wedge R_{\mathcal{A}}^{s}(\underline{x'}^{\mathcal{A}'_i},x^{\mathcal{A}_j}) \vdash_{\underline{x}^{\mathcal{A}'_i},\underline{x'}^{\mathcal{A}'_i},x^{\mathcal{A}_j}} \underline{x'}^{\mathcal{A}'_i} = \underline{x'}^{\mathcal{A}'_i},$ where $\{\underline{x}^{A'_i}.\psi^A_i\}$ denotes the embedding of $\{\underline{x}^{A'},\psi^A\}$ in C_{LI/T_i} \overline{a}

イロト イ母 トイラ トイラトー

重

A theory classified by a limit of toposes

Proposition

2 for every arrow s: $i \rightarrow j$ in I and for every function symbol z: A_1, \ldots, A_n \rightarrow B in Σ_i , ,

$$
\top \vdash_{\underline{x}^{A_1'}, \dots, \underline{x}^{A_n'}, x^{B_i}} (\exists \underline{x}^{B_i'}) \theta_z \wedge R_{B}^s) = ((\exists x^{A_1}, \dots, x^{A_n}) R_{A_1}^s \wedge \dots \wedge R_{A_n}^s \wedge
$$

$$
z_j(x^{A_{1j}},\ldots,x^{A_{nj}})=x^{B_j},
$$

3 for every arrow s: $i \rightarrow j$ in I and for every relation symbol $R \rightarrow A_1, \ldots, A_n$, in Σ_i ,

$$
((\exists \underline{x}^{A_1'_1},\ldots,\underline{x}^{A_n'_1})\theta_R \wedge R_{A_1}^s \wedge \cdots \wedge R_{A_n}^s) \vdash_{\underline{x}^{A_1'_1},\ldots,\underline{x}^{A_n'_1},\underline{x}^{A_1'_1},\ldots,\underline{x}^{A_n}_s} R_j(x^{A_1'_1},\ldots,x^{A_n'_s})
$$

and

$$
((\exists x^{A_{1j}},\ldots,x^{A_{nj}})R_j(x^{A_{1j}},\ldots,x^{A_{nj}})\wedge R_{A_1}^s\wedge\cdots\wedge R_{A_n}^s)+_{\underline{x}^{A_1},\ldots,\underline{x}^{A_{nj}},x^{A_{1j}},\ldots,x^{A_{nj}}}\theta_R,
$$

where z_j (resp. R_j) denotes the embedding of z (resp. R) in $\prod_i \sum_i \theta_z$ is a
representative of p ($Iz(x^{A_1}, \ldots, x^{A_k}) = y^{B_1}$) and θ_B is a formula which representative of $p_s([z(x^{A_1},...,x^{A_1})=y^B])$ and θ_R is a formula which
presents the subobject n (B(x^A1) x^A1)) presents the subobject $p_s(R(x^{A_1},...,x^{A_1})))$.

 290

Then $\mathbb T$ is a theory classified by the topos $\mathcal L := \lim_i D$.

References

- 畐
- O. Caramello, Theories, Sites, Toposes: Relating and studying mathematical theories through topos-theoretic 'bridges' (Oxford University Press, 2018).
- ā. P. Johnstone, Sketches of an Elephant, vols 1 and 2 (Cambridge University Press, 2002).
- 譶 G. Laumon, Vanishing cycles over a base of dimension ≥ 1 (In M. Raynaud & T. Shioda (éds), Algebraic Geometry, Proceedings, Tokyo/Kyoto 1982, volume 1016 des Lecture Notes in Mathematics (pp. 143–150). Springer Verlag).
- 螶
- A. Abbes, M. Gros, Topos co-évanescents et généralisations (arXiv:1107.2380).
- 譶 M. Kelly, Basic Concepts of Enriched Category Theory (London Math Soc. Lecture Notes Series 64, Cambridge Univ. Press, 1982).
- 螶 R. Street Limits indexed by category-valued 2-functors (Journal of Pure and Applied Algebra Volume 8, Issue 2, June 1976, Pages 149-181).

イロト イ押ト イミト イミト

 $2Q$