

From locales and all properties of **Cat**_{*κ*}(*B*) [References](#page-23-0) References References References

Sheaves on bicategories

Elio Pivet, joint work with Olivia Caramello

Istituto Grothendieck ETH Zürich

イロト イ押 トイヨ トイヨ トー

ミー $2Q$

Introduction

- Bicategories are one of several definitions for 2-categories. They are a horizontal categorification of the notion of monoidal category, which is the basis for enrichment theory.
- The notion of enrichment over a bicategory has been known for some time [\[7\]](#page-24-0) ; it generalizes the theory of enrichment over a monoidal category.
- On another hand, sheaves have been defined over quantaloids, which are a generalization of quantales, using a formalism of enrichment. As quantaloids are a particular case of bicategories, this suggests that the construction of sheaves over quantaloids can be extended to a construction of sheaves over a bicategory.

KED KARD KED KED E YORA

Sheaves on locales

• Recall that sheaves on a locale X can be expressed in several ways. Notably, we have the following description, of sheaves as "sets with a local equality" [\[6\]](#page-24-1).

Definition

A sheaf on X is a set A together with an application $d : A \times A \rightarrow X$, satisfying :

- \bullet $d(x,y) = d(y,x)$
- $d(x, y) \wedge d(y, z) = d(x, z)$
- This description can be put in perspective by considering quantaloids, in particular the quantaloid of relations of X .

Sheaves on quantales

- Quantales are a non-commutative generalization of locales. They are complete lattice like locales, but with an additional operation representing a non-commutative intersection.
- This operation is the one we ask that is distributed through joins, not the usual meet.
- Any locale is a commutative quantale in which the additional operation coincides with the meet.
- As for locales it is possible to define sheaves on quantales as sets with an equality [\[2,](#page-23-1) [3,](#page-23-2) [10\]](#page-25-0), but this time, more complicated conditions arise.
- This definition does give back the same category of sheaves over a locale considered as a quantale that what we would get by considering it as a locale.

Quantaloids

Definition

A quantaloid is a category for which all hom-sets are locally ordered in a way that respect composition : if we have two arrows $u, v : q_1 \rightarrow q_2$ then for any composable arrows $fu \leq fv$ and $ug < ug$. Moreover, we ask that composition respects joins : for any family $(u_i)_{i\in I}:q_1\to q_2$ of arrows and any composable arrows : $f \bigvee_{i \in I} u_i = \bigvee_{i \in I} fu_i$ and $(\bigvee_{i \in I} u_i)g = \bigvee_{i \in I} u_i g$.

- **•** In other words, quantaloids are **Sup**-enriched categories, where **Sup** is the category of complete lattices and join-preserving morphisms between them.
- Any quantale is precisely a one-object quantaloid.

Sheaves on quantaloids

- It is possible to define sheaves on quantaloids by generalizing the definition of sheaves on quantales and locales as sets with equality. This time, however, we will need to take a set that varies along the objects of the quantaloid [\[5,](#page-23-3) [9\]](#page-24-2).
- The definition of sheaves over quantaloids uses a theory of enrichment over the base quantaloid \mathcal{Q} . This notion may not seem to be exactly the same as that of enrichment over a monoidal category, but it is a particular case of a greater theory of enrichment in bicategories, which also comprises that of enrichment over a monoidal category.

Definition

A sheaf over some quantaloid Q is a $Pr(Q)$ -category which is skeletal and Cauchy-complete.

- Sheaves on quantaloids generalize sheaves on locales; in fact, any locale X admits a quantaloid of relations of X , over which the quantaloid-theoretical sheaves are precisely sheaves over X [\[1\]](#page-23-4).
- For any site (C, J) we can get a quantaloid $\mathcal{R}(\mathcal{C}, J)$ of closed relations such that $\text{Sh}(\mathcal{R}(\mathcal{C}, J)) = \text{Sh}(\mathcal{C}, J)$.
- In general, $\text{Sh}(\mathcal{Q})$ is not a Grothendieck topos, because the lattices of subobject fail to satisfy the property of distributivity of colimits over pullbacks (they are not locales).

Bicategories : definition

- Bicategories are one of the several possible definitions for 2-categories. They are defined by asking that the composition functor is associative and unital up to isomorphism.
- More precisely, a bicategory β is given by a set of 0-cells or objects $Ob(\mathcal{B})$, and for each par x, y of 0-cells, a hom-category $\mathcal{B}(x, y)$. The objects of $\mathcal{B}(x, y)$ are 1-cells while its arrows are 2-cells.
- \bullet On each 0-cell x, there is an identity 1-cell that we denote by id_x and on each 1-cell f, there is an identity 2-cell 1_f .
- A family of composition functors $c_{xyz} : \mathcal{B}(y, z) \times \mathcal{B}(x, y) \rightarrow \mathcal{B}(x, z)$ yields a composition of 1-cells, but also a horizontal composition of 2-cells, denoted by $f * g$.
- Several isomorphisms and coherence conditions dictate the behavior of a bicategory.**YO A REPART ARE YOUR**

Bicategories : examples

- Any monoidal category can be expressed as a one-object bicategory, with the composition of 1-cells being given by the monoidal operation on the objects of the base monoidal category. The coherence conditions of the monoidal category coincide with those of the resulting bicategory.
- Quantaloids are a particular case of bicategories, in which the hom-categories are posets admitting coproducts, and such that the composition functor respects coproducts. Note that the coproduct in a quantaloid is an idempotent operation.
- In general, we call locally cocomplete a bicategory in which all the hom-categories admit those colimits being preserved by the composition functor.

Categorical operations in a bicategory

- Recall that a closed monoidal category is a monoidal category for which the monoidal operation has a right adjoint called the internal hom.
- In the corresponding one-object bicategory, this amounts to asking that the composition functor with one fixed variable has a right adjoint : the internal hom corresponds to right Kan extensions and right Kan lifts.
- In a quantaloid, the right Kan extension correspond to the right implication.
- If every hom-category admit right Kan extensions and lifts, we say that β is closed.
- \bullet We will work with β being closed and locally cocomplete ; that enable us in particular to compute coends, which are a particular case of colimit.

 Ω

B-categories

Definition

A B -category is the data of :

- A pair (M, A) , where A is a $Ob(B)$ -typed set, i.e. a set together with a function $t : A \rightarrow Ob(B)$, and M is an endomatrix over A, i.e. for any $a, b \in A$, $\mathbb{M}(a, b) \in \mathcal{B}(tb, ta)$.
- For all $a, b, c \in A$, a idempotency 2-cell : ι_{abc} : $\mathbb{M}(a, b)\mathbb{M}(b, c) \Rightarrow \mathbb{M}(a, c)$.
- For all $a \in A$, a reflexivity 2-cell : ρ_a : id_{ta} $\Rightarrow M(a, a)$.

Satisfying some unitality and associativity conditions.

- This recovers the notion of enrichment in a monoidal category. Enriching in a monoidal category is the same as enriching in the corresponding bicategory.
- This also recovers the notion of enrich[men](#page-9-0)[t i](#page-11-0)[n](#page-16-0) [a](#page-10-0) [q](#page-11-0)[u](#page-6-0)[a](#page-15-0)n[ta](#page-6-0)[l](#page-7-0)[o](#page-15-0)[id](#page-16-0)[.](#page-0-0)

The category $\mathsf{Cat}(\mathcal{B})$

Definition

A B-functor between two B-categories $f : (\mathbb{M}, A) \to (\mathbb{N}, C)$ is a type-preserving function $f : A \rightarrow C$ together with a 2-cell for each $a, a' \in A : f_{aa'} : \mathbb{M}(a, a') \Rightarrow \mathbb{N}(f(a), f(a')),$ satisfying some coherence conditions.

- There is a category $\mathsf{Cat}(\mathcal{B})$ of \mathcal{B} -categories and \mathcal{B} -functors between them.
- To define the notions of Cauchy-completion and skeletality on B -categories, we need another kind of morphism between B -categories : distributors.

KED KARD KED KED E YORA

Distributors between *B*-categories

Definition

A distributor between two B-categories $\phi : (\mathbb{M}, A) \to (\mathbb{N}, C)$ is the data of :

- A B-matrix $\phi : A \to C$, i.e. $\phi(c, a) : ta \to tc$ for all $a \in A$, $c \in C$.
- A 2-cell $\delta_{cc' a' a}$: $\mathbb{N}(c, c') \phi(c', a') \mathbb{M}(a', a) \Rightarrow \phi(c, a)$ for all $a, a' \in A$, $c, c' \in C$.

Satisfying two sets of coherence conditions corresponding to the following bimodule conditions :

• $1 \cdot m \cdot 1 = m$

•
$$
a \cdot (a' \cdot m \cdot b') \cdot b = (aa') \cdot m \cdot (b'b)
$$

The bicategory $\text{Dist}(\mathcal{B})$

Distributors can be composed one to another through the use of coends : for any two distributors $\psi : (\mathbb{M}, A) \to (\mathbb{N}, C)$ and $\phi : \overline{(N, C)} \to (\mathbb{P}, D)$, we have :

$$
(\phi\psi)(d,a) = \int^{c:C} \phi(d,c)\psi(c,a)
$$

- \bullet The matrix M is an identity distributor over any β -category (M*,* A) for this composition.
- We thus get a category **Dist**(β) of β -categories and distributors between them. It is possible to make it into a bicategory by considering the following 2-cells :

Definition

A morphism of distributors α : $\psi \rightarrow \phi$, for ψ, ϕ : (M, A) \rightarrow (N, C), is the data for all $a \in A$, $c \in C$ of a 2-cell $\alpha_{a,c} : \psi(c, a) \to \phi(c, a)$, satisfying some coherence conditions.

Singletons of a B -category

 \bullet To express completeness of a B-category, we must define the following notion :

Definition

A singleton of (M, A) is a distributor $(id_*, *) \rightarrow (M, A)$, for some $* \in Ob(B)$, which has a right adjoint.

- In this definition, (id∗*,* ∗) is the B-category composed of the 1×1 matrix (id_{*}), with $* \in Ob(B)$ over the $Ob(B)$ -typed set $\{*\}$ (of type $*$).
- The most important type of singleton is given by M(−*,* a) for some $a \in A$. Those singletons of that form are called the representable singleton.

Sheaves on a bicategory

Definition

A β -category (M, A) is said to be :

- Skeletal if for any $a, b \in A$, $\mathbb{M}(-, a) = \mathbb{M}(-, b)$ implies $a = b$.
- Complete if any singleton of (M*,* A) is of the form M(−*,* a) for some $a \in A$.
- We denote by **Cat***κ*(B) the full subcategory of **Cat**(B) whose objects are skeletal and complete B -categories.
- Recall that for a quantaloid \mathcal{Q} , $\mathsf{Sh}(\mathcal{Q})$ is defined as $Cat_{\sigma\kappa}(Pr(\mathcal{Q}))$. Sheaves on B should be defined as skeletal and complete categories enriched in a bicateory obtained from B.
- \bullet In the case of the bicategory B_{Set} , skeletal complete **B_{Set}-categories are usual Cauchy-complete categories.**
A did a did a set of the set of th

- In general, the category $\mathsf{Cat}_{\kappa}(\mathcal{B})$ is not a topos, because it contains the case of quantaloids.
- Also because of that, any Grothendieck topos can be recovered as some $\text{Cat}_{\kappa}(\mathcal{B})$ (by taking the corresponding quantaloid for example).
- We are still investigating all properties of the category $Cat_{\kappa}(\mathcal{B})$, but we are going to present an unfinished plan for a construction which exhibits it as a left-exact reflective subcategory of the category $[\mathsf{Map}(\mathcal{B})^\mathrm{op}, \mathsf{Cat}]$ of indexed categories over $\mathsf{Map}(\mathcal{B})$.

Sheaves are presheaves

Definition

Let (M, A) be a skeletal complete B-category. Then define $P_{M, A}$ as follows :

- For any object x of B, $Ob(P_{M,A}(x))$ is the set of all elements of A of type x. We denote it by A_{x} .
- For any a, b of type x, an arrow $a \rightarrow b$ is a pair $(f: x \rightarrow x, \theta: f \Rightarrow M(a, b)).$
- For any map $f: x \rightarrow y$ in B, we get a function $P_{\mathbb{M},A}f: A_{v} \to A_{x}$ defined by : $P_{\mathbb{M},A}f(a)$ is the element of A which represents the singleton M(−*,* a)f .

Then this can be made into a functor $P: \mathsf{Cat}_{\kappa} \to [\mathsf{Map}(\mathcal{B})^{\mathrm{op}}, \mathsf{Cat}].$

The B-category of elements

- Now we construct a functor \int : $[Map(B)^{op}, Cat] \rightarrow Cat(B)$.
- As the resulting category is not necessarily complete or skeletal, we will need some "completion" functor.

Proposition

Let $F : \mathsf{Map}(\mathcal{B})^{\mathrm{op}} \to \mathsf{Cat}$ be an indexed category. Consider the following data :

- The Ob (\mathcal{B}) -typed set $\int F$ given by $(\int F)_x = F(x)$ for all $x \in Ob(\mathcal{B}).$
- For all $a \in F(x)$, $b \in F(y)$ with $x, y \in Ob(B)$, we define $\mathbb{N}(a, b)$ as the colimit of those $y \rightarrow x$ such that there is an arrow $F(f)(a) \rightarrow b$ in $F(y)$; we also take 2-cells between those arrows.

Then $(N, \int F)$ is a *B*-category.

The Cauchy functor

Proposition

For (M, A) a B-category, consider the set CA of singletons of A, i.e. of distributors $\sigma_!:($ id $_*,*)\to (\mathbb{M},\mathcal{A})$ having a right adjoint $\sigma^!.$ Type it through $t\sigma = *$, and consider the endomatrix S on CA given by : $\mathbb{S}(\sigma_1, \sigma_2) = \sigma_1^!(\sigma_2)$! Then (S, CA) is a skeletal complete B -category.

Definition

We define the Cauchy functor $C : \mathbf{Cat}(\mathcal{B}) \to \mathbf{Cat}_{\kappa}(\mathcal{B})$ sending (M, A) to (S, CA) and sending any B-functor $F : (M, A) \rightarrow (N, C)$ to the B-functor $CF : (\mathbb{S}_A, \mathcal{C}A) \to (\mathbb{S}_B, \mathcal{C}C)$ which sends any s ingleton σ of (\mathbb{M},\mathcal{A}) to the singleton $\mathsf{F}\sigma=(\mathsf{F}_!\sigma_!,\sigma^!\mathsf{F}^!)$ of (\mathbb{N},C) , where $F_!(c,a) = \mathbb{N}(c, F(a))$ and $F^!(a,c) = \mathbb{N}(F(a), c)$.

イロト イ押ト イヨト イヨト

 \Rightarrow

 $2Q$

The whole picture

- **•** There is an adjunction C ⊣ *i*, where *i* : $Cat_{\kappa}(\mathcal{B})$ → $Cat(\mathcal{B})$ is the inclusion functor.
- More globally, we give here a diagram of all the functors we just defined :

Complete B-categories as a lex reflection

Conjecture

 $\mathsf{Cat}_\kappa(\mathcal{B})$ is a left-exact reflective subcategory of $[\mathsf{Map}(\mathcal{B})^\mathrm{op},\mathsf{Cat}]$

- To prove it we must show that we have an adjunction ${\mathcal C} \int \dashv P.$ The details would be given by the following :
- The unit of the adjunction would be, for any $\mathcal{F}: \mathsf{Map}(\mathcal{B})^\mathrm{op} \to \mathsf{Cat}, \ \eta_\mathcal{F} : \mathcal{F} \to \mathit{PC} \int \mathcal{F}.$ For any $\mathrm{\mathsf{x}}\in\mathsf{Ob}(\mathcal{B})$, the corresponding functor $\mathcal{F}(\mathrm{\mathsf{x}})\to P\mathcal{C}\int\mathcal{F}(\mathrm{\mathsf{x}})$ is given by $\eta_{\mathcal{F}}(a) = \mathbb{N}(-, a)$.
- The counit of the adjunction would be the identity, because the completion of a complete β -category is the original B -category.
- We also need to prove that $\mathcal{C}\int$ preserves finite limits.

YO A REPART ARE YOUR

Perspectives

- As several attempts have already been made to define enriched sheaves [\[4\]](#page-23-5), notably as left-exact reflections of $[\mathcal{C}^\mathrm{op}, \mathcal{V}]$ in the case of a monoidal-enriched category C . We shall investigate how the definitions we gave relate to that theory ; we shall in particular be interested with the case $V = Ab$.
- Notice that we have the same "matricial formalism" that there was for quantaloids, with two operations given by the coproduct (generalizing the sum/join) and composition (generalizing the product of matrices).

 \dots to bicategories **and and and and properties of** $\mathsf{Cat}_\kappa(\mathcal{B})$ **[References](#page-23-0)**

Bibliography I

- [1] R. F. C. Walters. "Sheaves and Cauchy-complete categories". English. In: Cah. Topologie Géom. Différ. Catégoriques 22 (1981), pp. 283–286. issn: 0008-0004.
- [2] Mohammad Nawaz. "Quantales: Quantal sets.". PhD thesis. University of Sussex, 1985.
- [3] RP Gylys. "Quantal sets and sheaves over quantales". In: Lithuanian Mathematical Journal 34.1 (1994), pp. 8–29.
- [4] Francis Borceux and Carmen Quinteiro. "A theory of enriched sheaves". English. In: Cah. Topologie Géom. Différ. Catégoriques 37.2 (1996), pp. 145–162. issn: 0008-0004.
- [5] RP Gylys. "Sheaves on quantaloids". In: Lithuanian Mathematical Journal 40.2 (2000), pp. 105–134.

KED KARD KED KED E YORA

Bibliography II

- [6] Peter T. Johnstone. Sketches of an elephant. A topos theory compendium. I. English. Vol. 43. Oxf. Logic Guides. Oxford: Clarendon Press, 2002. isbn: 0-19-852496-X; 0-19-853425-6.
- [7] Ross Street. "Enriched categories and cohomology". English. In: Repr. Theory Appl. Categ. 2005.14 (2005), pp. 1–18. URL: [www.tac.mta.ca/tac/reprints/articles/14/](www.tac.mta.ca/tac/reprints/articles/14/tr14abs.html) [tr14abs.html](www.tac.mta.ca/tac/reprints/articles/14/tr14abs.html).
- [8] Isar Stubbe. "Categorical structures enriched in a quantaloid: categories, distributors and functors". English. In: Theory Appl. Categ. 14 (2005), pp. 1–45. ISSN: 1201-561X.
- [9] Hans Heymans. "Sheaves on Quantales as Generalized Metric Spaces". PhD thesis. Universiteit Antwerpen, 2010.

[From locales and quantales...](#page-2-0) [...to bicategories](#page-7-0) [Properties of](#page-16-0) **Cat***κ*(B) [References](#page-23-0)

KED KARD KED KED E YORA

Bibliography III

[10] Hans Heymans. "Sheaves on involutive quantales : Grothendieck quantales". English. In: Fuzzy Sets and Systems 256 (2014), pp. 117–148.