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Talk Outline

> Many views on diffusion » Categorical network diffusion
o Hodge Laplacian o Q%at-categories
o Graph/graph connection Laplacian o Q%at-valued (co)presheaves
o Combinatorial Hodge Laplacian o Weighted global sections
» Network sheaves o Tarski Laplacian
o Global sections o Hodge-Tarski Theorem
o Sheaf Laplacian o Tarski Fixed Point Theorem
> (&antale—enriched categories > Applications

o Quantales
© (J-categories

o Weighted meets/joints
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The Many Facets of Diftusion

Diffusion in physics

» Diffusion is central concept in thermodynamics. Heat equation, 0,x = a V*x with
Laplacian V2 models Change of temperature or concentration in Euclidean space over time

> Diffusion generalized to manifolds. Suppose M is a m-dimensional Riemannian manifold.

The deRahm complex is the complex
QM) & QM) S - L v 4 o
where Q¥(M) is the Hilbert space of differential forms and d is the exterior derivate.
o A =do+ dd where 0 = d* is the linear adjoint
o w=a+p+ywherea €imd, p €imo, y € ker A
Hodge Theorem. Hj (M; R) = ker A,

A, = d*d is the Laplace-Beltrami operator and generalizes the classical Laplacian.
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The Many Facets of Diftusion

Diftusion in graph theory

> Suppose X = (X, X)) is an undirected graph with | X,| = n and with label function x : X, - R.

> Two nodes v, w € X, are adjacent, written v ~ w, it (v, w) € X,. Let deg(v) be the number adjacent
nodes

> The adjacency matrix of a graph is defined

A - I, v~w
W1 0, otherwise

> Let (By)iso be a random walk on X; By chosen uniformly at random. The transition matrix of this

Markov chain is
1

PV,W — ”:D(Bk = W ‘ Bk—l — V) — deg(v)’
0, otherwise
> The matrix L = I — D™'A is the normalized graph Laplacian for random walks; leads to heat equations

W~y

® Continuous time, dx = — Lx

o Discrete time, U, = ( = [X(Bk) | By = V] )veXo Duke
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The Many Facets of Diftusion

Diffusion in discrete geometry

> Vector diffusion map generalizing random walks on graph with vector features (Singer

& Wu 2012)
» Graph connection Laplacian &, , = I — 27 '/ where
Alv,w| = 2 w, O, X

VW= VW -w
wn~y

for parallel transport maps O, ,, € 0(d).
> Heat equation 1s X = — Z£X where x(0) = (R%)"

» Usetul in learning representation of vector-field data (Battiloro, R., et al. 2024)
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The Many Facets of Diftusion

Diffusion in computational topology

» [.et X be a simplicial Complex or a regular cell Complex

> The simplicial chain complex
CX) L ;X)L Lox) L

k
where d([iyi;-++i,]) = Z (—1Yligiy++i+++ii]. Let d = 0* be the adjoint of the boundary map.
=0
» Eckmann (1994) suggested a Hodge theory with A = dd + dd where Hodge decomposition
and Hodge theorem ker A = H,(X; R) still hold.

» ODE x = — Ax converges to a harmonic homology class tor any x(0) € C,(X)

> This theory is extended to cellular sheaves which generalizes both the combinatorial
Hodge Laplacian and the connection Laplacian (Hansen & Ghrist, 2019)
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Network Sheaves
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Network Sheat Theory

> Let X be a graph (general theory of cellular for regular cell complexes). Let £ = (X, <) be a partial
order given by the transitive closure of incidence relation

vdel>wite=(v,w)is an edge with boundary d(e) = {v, w}
> Suppose € is a data category.

o A network sheaf on X valued in € is presheaf: F: 7P > &
o A network cosheaf is a copresheat: F: f > &

o The object F, := Fv = Fv is called the stalk at v

© lhe maps

are called restriction & corestriction maps
» The global sections of F is defined as lim F which can be identified as the cone
I'OGE) = {(Xv’ xv,e)veV,eEE :Eele(xv) = Xevr Xey = Xewo Ve = (v, W)}

Remark. F is actually a sheat it we put the Alexandrov topology on # and it € is complete. Category of
sheaves on Alex(#) equivalent to [ [7°P, €] (Curry 2014). Duke

12




Network Sheat Theory
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Network Sheat Theory
& = Filb

> Suppose € is the category Z'ilb of Hilbert spaces and F is a network sheaf over X valued in #ilb
and suppose F is the network cosheaf where F, o, is F_ (linear adjoint)

> C'(XGF) = @,ex F, and C' (X F) = @,ex, F, are the O and 1 -cochains with coboundary map
(dx), = Zve [v:e]l F ge(xv)

where [v : e] = £ 1 according to orientation

» Then, the sheaf Laplacian is the map & : C°(X; F) —» CY(X; F) defined & = d*d, or, explicitly

(g){)v — Zwﬁ]e[Zv (FV<]€ —el>v>(x ) - ( vle —el>w)(x )
o F . =F,,, =TIimplies & is the graph Laplacian

o F F for 0,, €0d),w,, >0 1mphes % is the graph connection Laplac1an

y<le— €>V V w V w

Theorem (Ghrist & Hansen 2019; Ghrist & Gould TBD). For any initial condition x(0) € C°(X; F),
X = — &x converges to orthogonal projection onto

{X ; EelZv(xV) = fe[Zw(xw), Ve = (v, w)} ~ ['(X; F) DUke
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Quantale Enriched Category Theory
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Quantale Enriched Category Theory
Quantales

> A complete lattice Q is a partially ordered set (Q, <) such that the supremum \/,c¢s exists
for every subset S C O.

> [n a complete lattice, the meet (/) can be always be written as a join (\/) on downsets

> A quantale 1S a Complete lattice with the structure of 2a monoid (Q, ® ,1) such that
P& (\/qesq) — \/qES(p ® g9)

(\/QESQ) X p = \/qu(q ®p)’
»[—,—1:0%x0 — O defined byp®@qg=r ift g < [p,7] (Adjoint Functor Theorem)

> O is unitally bounded if 1 is the terminal object

VSCSVpe O

Assumption. We assume Q is a unitally-bounded commutative quantale.

Duke
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(Lantale Enriched Category Theory

o ltp<g thenr®g=<rQ®gq
© P> /\quq — /\qES[p’ q]
> Examples of quantales:
e Locales: p A (Vesq) = Ves(0 A0
o Boolean algebra: 0 = {0,1}
o Extended positive reals: [0,00] with + under the opposite order >

o Unit interval: O = [0,1] with a t-norm structure (Hoffman & Reis, 2012)
SRRt =s5-1
s®t=max(s+1t— 1,0);
s @ t = min(s, 1)
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Quantale Enriched Category Theory

Q-Categories

> Suppose Q is a quantale. A Q-category € is a category enriched in Q
® Objects: (6), 18 arbitrary
o Morphisms: homg(x,y) € Q
o Composition Law: homg(y, z7) @ homeg(x, y) < homeg(x, z)
o Unit Law: 1 < homg(x,x) (equality it Q is unitary bounded)

> A Q-funtor between Q-categories € and 9 is a tunction F : (€), = (D), such that

homg(x, y) < homg,(Fx, Fy)
for all x,y € (€),

> A Q—adjunction between Q-categories € and @ are O-functors F: € = @ and G : @ — & such that
homg,(Fx,y) = homg(x, Gx)

> Examples:

® 10,1}-categories are preorders and {0,1}-functors are monotone maps

® [0,00]-categories are Lawvere metric spaces and [0,00]-functors are non-expansive mappings. Duke
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Quantale Enriched Category Theory

More examples of Q-categories

> 0 is a Q-category with (Q)y =0 and hom(p, ) = [p, q]

B I, a=>b

0, a#b

> Let € be a Q-category. Then, € is a Q-category with (%), = (€), and
homg,,(x, y) = homg(y, x)

» Let S be a set. Then, S is a Q-category with (S), = S and homg(a, b) = {

> Suppose (€;) ;e 1s a collection of Q-categories. Then, [T, is a Q-category with objects

el l
(Hzel l>0 - Hiel(%l)o

and morphisms

hom [1_% ( (Xier (Yi)ia) = /\ierhomg (x; ;)

Duke
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Quantale Enriched Category Theory

Q-Categories (continued)

> Suppose € and D are Q-categories. Then, [€, D] is a Q-category with objects
([€,2])y={F: % — D}
and morphism
homg 1 (F, G) = (e, homg(Fx, Gx)
> Suppose € is a Q-category. Then, G = €r, Q] is the category of presheaves.
> Suppose € is a Q-category. Then, G = [Cig, 2] is the category of copresheaves.

Duke
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Quantale Enriched Category Theory

Weighted meets and joins
Suppose € is a Q-category, D is a set, and suppose D : @ — € and W: @ — Q are functions.

o The meet of F weighted by Wis an object Aegy Dd € (€), with the universal property:
homcg(x, /\c‘?/E@Dd) = Njeg [Wd, homg(x, Dd)]

o The join of F weighted by W is an object \/ jeg, Dd € (€), with the universal property:
homg (\/ Jee Dd, x) = A\ geqs [Wd, homg(Dd, x)|
Lemma. Right Q-adjoints preserve weighted meets. Left Q-adjoints preserve weighted joins.

Proof. Suppose R : € — €' and consider the diagram D : & — (€), with weight W: 2 — 0.
Then,

homg.(x, R \jegy Dd) = homg (Lx, Yy Dd)
— Ndeo |Wd, homg(Lx, Dd)
= Ao [Wd, homg(x, RDd):

_ homg (x, Ao, RDd) Duke

21




Categorical Network Diffusion
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Categorical Network Diftusion

Q% at-enriched categories
> A Q@ at-category consists of
e a collection (%),
o for each pair X, Y € (€), a Q-category Homg(X, Y)

o For every triple X,Y,Z € (6),, a Q-functor ox vz - Homg(Y, Z) X Homg(X, Y) — Homg, (X, Z)

> A pseudofunctor F : € - D between QFat-categories is a function F : (), = (D), and a Q-funcror
Fyy: Homg(X, Y) — Homg,(FX, FY) satistying the compatibility conditions

® FY,Z(g) ° ny(f) = FX,Z(g o f)

» Example: Q%at is the category where objects are Q-categories and where hom objects are
HomQ%t(%, D) =1[€6,I]

> Suppose € and @ are Q€ at-categories and F: 6 - 9D, W: € — QFat are pseudofunctors. Then, the
limit of F weighted by W is an object im"'F € (2), such that the following is an isomorphism

Hom, (X, lim" F) =~ [€, Q% at] (W, Hom (X, F —) ) Duke
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Categorical Network Diftusion
Q% at-valued (co)presheaves

» We consider a pair consisting of a presheat F: £ — Q®at and copresheat F: F - Q€at

o Fand F map nodes/ edges to Q-categories
o We assume that Fv = Fv = F,and Fe = Fe = F, for all nodes v € X, & edges e € X,

o F _ isa Q-functor between Q-categories F, and F,

o F,4, is a Q-tunctor between Q-categories F, and F,

> We also consider the data of a weighting W: X, x X, - O
» Parallel transport defined for a path tr, : F, — va(Bodnar et al, 2022)

Consider a pathy =v, e >v, Qe > -+ Qe, | 2 v, in X, Then, tr, is detined

tr, ;== F I oo [f o F I

14 vede, 1 —e, >v,_; vzder,—e >y,” e —e, >y,

Duke
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—elv —ebw
FV/\>F6\/FW
F v<le F wle

F: 7% - Q¢at
F: ¥ — Q€at
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Categorical Network Diftusion
Weighted Global Sections

> Let * be the 1-object Q-category

> For e = (v, w) let A(e) be the Q-category with objects (A(e)), = {v,w} and
hom, (v, w) = W(v, w), hom,,(w,v) = W(w, v)

> Define W: £ — Q%®at by sending nodes v € (), to * and edges e € (), toA(e) with
(A(e)) = d(e) and let W(e & v) be the functor * — A(e) which picks out the object v.

» Let TV(X; F) := lim" F which is a Q-category, a subcategory of .

jE(S )o

Duke
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Categorical Network Diftusion

Weighted global sections (continued)

» Define W-global sections to be elements (x,),ex, € I] i F, such that for every e = (v, w) we

VEX) V
have

W(v,w) < hom; (F,_ (x).F,  (x,))
Wow.v) < homy, (F,y, (5,). F, (5,)
» Remark: if W(u,v) = 1 for all (1, v) € X%, then
homy, (F, (x,).F,, (x,)) =homg (F,. (x,).F,, (%)) =
which implies F _ (x,) = F, F,..(x,).

— ey

Theorem. The objects of TY(X; F) are W-global sections Furthermore,
hOmF(X F)((x )VEXO (yv vEXO /\ h()InF (X yv)

VEX,

Duke
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Categorical Network Diftusion
Tarski Laplacian

Definition. Given the data
F: 9% — Q%at
F: > Q%at
the Tarski Laplacian is the map £ : [] _ F, = [] _ F, given by
W(V =)

(Ex)v /\ v<le_ el>w

v<eP>w

where x = (xv)vexo.

Theorem. & is a functor of Q-categories.

(X, y) < homH (g(x), Sf(y)).

VEXO

Proof. Need to show homH

VEXO

Use that F and F are Q-functors and need a lemma about Weighted limits.

Duke
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Interlude

Analogy between adjoint linear maps and adjoint functors

> Suppose € and D are Q-categories. Recall, L 4 R is an adjuction when
homg,(Lx, y) = homg(x, Ry) for all x € (€),,y € (D),

> Suppose V and W are R-vector spaces. Then, L : V — W has a linear adjoint when
(Lx,y) = {(x,L*¥y) forallxe V,ye W

Duke
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Categorical Network Diftusion

Computing Global Sections

Definition. Suppose g € Q. Let S(Z) denote the subcategory of [] _., F, spanned by x = (%,)vex,

such that

VEXO

homHVEXOFv(X, SZX) > q
Lemma. Suppose F . - F,, tor every incidence v < e in #. Then, X € S (Z) if and only if
homy. (F . (x,).F,. (x,)) = q® W(,w) for every e = (v,w) € X,

Proof. We have
homHveXO F, (55’ ff)_c)) — /\vexo hOva <xv’ 3(56))\/)

— Wv,—-)
_ /\vEXOhova <xv’ /\vﬁngM)/Fvslefe[ZW(xw)>

— /\VEXO /\vﬁleIZW W(V’ W)’ hOva (xv’ FvﬂeerW(xw))

Duke
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Categorical Network Diftusion

Computing Global Sections

Proof (continued).
hOIIlH X F ()_C)’ g)_é) — /\vEXO /\vsleZw W(V, W)’hOva< v<le_e[>w(x )>
veX, VY

— /\Vexo /\vslel>w W(V w), homg, (EeDW(xV)’EeDW(xW)):

Z q
if and only if
W(v w),homy, (F,_ (x).F.,. (x,))| = g foralle = (v,w) € X,
it and only it |
homj (_eDW(x ), F . (x W) =g ® W, w) for all e = (v, w) € X,
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32




Categorical Network Diftusion
Hodge-Tarski Theorem

Theorem. Given the data
F: P - Q€at
F: ¥ - Q€at

suppose F < F,, for every incidence v Qe in #. Then, TV (X F) = S|(2).

— ey

» Compare to the Hodge Theorem:
HC?R(M; R) = ker A
» Compare to the Hodge Theorem for network sheaves (€ = Zilb):
['CX; F) = ker A
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Categorical Network Diftusion

Tarski Fixed Point Theorem

Theorem. Suppose € is a Q-category and & : € — € is a Q-functor. Suppose € has all
Weighted joins. Then, for every g € Q, the category Sq(g ) generated by x € (6), such that

homg(x, £x) > g has all weighted meets and joins.

» Work in Progress to prove similar result for categories entriched in an arbitrary COSMOS

cosmos = bicomplete closed symmetric monoidal

Corollary. Suppose F, € (Q%at), has all weighted meets and joins for all v € X,,. Then,
(X F) = 81(Z) has all weighted meets and joins.
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Applications
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Applications

Logic, engineering, & economics

» Applications with F, = [€, Q] for € a discrete Q-category
o Q= {0,1}, network multi-modal logic (R. & Ghrist, 2022)
o Q = [-00, ], synchronization of max-plus linear systems (R., Zavlanos, 2023)
o Q = [0,1], distributed fuzzy formal conceprt analysis (Ghrist & Lopez, TBD)
» Other applications
o O-valued preference relations

o network preferenee dynamies (R., Ghrist, Henselman-Petrusek, Bell, Zavlanos, 2024)
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Thank You

Any questions?

Hans Riess Email: hans.riess@duke.edu
Autonomous Systems Laboratory X/Twitter: @hansmriess
Duke University Website: hansriess.com
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