Towards Categorical Diffusion Toposes in Mondovi, Grothendieck Institute, September 2024

Hans Riess Autonomous Systems Laboratory Duke University Email: <u>hans.riess@duke.edu</u> X/Twitter: @hansmriess Website: <u>hansriess.com</u>

Joint work with Robert Ghrist, Miguel Lopez & Paige Randall-North

Talk Outline

- Many views on diffusion
 - Hodge Laplacian
 - Graph/graph connection Laplacian
 - Combinatorial Hodge Laplacian
- Network sheaves
 - Global sections
 - Sheaf Laplacian
- Quantale-enriched categories
 - Quantales
 - Q-categories
 - Weighted meets/joints

Categorical network diffusion

- *QCat*-categories
- *QCat*-valued (co)presheaves
- Weighted global sections
- Tarski Laplacian
- Hodge-Tarski Theorem
- Tarski Fixed Point Theorem

Applications

The Many Facets of Diffusion

The Many Facets of Diffusion Diffusion in physics

- Diffusion is central concept in thermodynamics. Heat equation, $\partial_t x = \alpha \nabla^2 x$ with
- The deRahm complex is the complex

 $\Omega^0(\mathbb{M}) \xrightarrow{d} \Omega^1(\mathbb{M})$

where $\Omega^k(M)$ is the Hilbert space of differential forms and d is the exterior derivate. • $\Delta = d\partial + \partial d$ where $\partial = d^*$ is the linear adjoint

• $\omega = \alpha + \beta + \gamma$ where $\alpha \in \operatorname{im} d, \beta \in \operatorname{im} \partial, \gamma \in \ker \Delta$ Hodge Theorem. $H^k_{dR}(\mathbb{M}; \mathbb{R}) \cong \ker \Delta_k$ $\Delta_0 = d^*d$ is the Laplace-Beltrami operator and generalizes the classical Laplacian.

Laplacian ∇^2 models change of temperature or concentration in Euclidean space over time ► Diffusion generalized to *manifolds*. Suppose M is a *m*-dimensional Riemannian manifold.

$$(\mathbb{M}) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^m(\mathbb{M}) \xrightarrow{d} 0$$

The Many Facets of Diffusion Diffusion in graph theory

- nodes
- The adjacency matrix of a graph is defined

Let $(B_k)_{k\geq 0}$ be a random walk on \mathbb{X} ; B_0 chosen uniformly at random. The transition matrix of this Markov chain is

$$P_{v,w} = \mathbb{P}(B_k = w \,|\, B_k)$$

- - Continuous time, $\partial_t x = -Lx$
 - Discrete time, $U_k = (\mathbb{E}[x(B_k) | B_0 = v])_{v \in \mathbb{X}_0}$

• Suppose $\mathbb{X} = (\mathbb{X}_0, \mathbb{X}_1)$ is an undirected graph with $|\mathbb{X}_0| = n$ and with label function $x : \mathbb{X}_0 \to \mathbb{R}$. ► Two nodes $v, w \in X_0$ are adjacent, written $v \sim w$, if $(v, w) \in X_1$. Let deg(v) be the number adjacent

 $A_{v,w} = \begin{cases} 1, & v \sim w \\ 0, & \text{otherwise} \end{cases}$

 $_{k-1} = v) = \begin{cases} \frac{1}{\deg(v)}, & w \sim v \\ 0 & \text{otherwise} \end{cases}$ • The matrix $L = I - D^{-1}A$ is the normalized graph Laplacian for random walks; leads to heat equations

The Many Facets of Diffusion Diffusion in discrete geometry

- Vector diffusion map generalizing random walks on graph with vector features (Singer & Wu 2012)
- Graph connection Laplacian $\mathscr{L}_{con} = I \mathscr{D}^{-1}\mathscr{A}$ where $\mathscr{A}[v,w] = \sum w_{v,w} O_{v,w} x_w$
 - for parallel transport maps $O_{v,w} \in O(d)$.
- Heat equation is $\partial_t \mathbf{x} = -\mathscr{L} \mathbf{x}$ where $\mathbf{x}(0) = (\mathbb{R}^d)^n$
- ► Useful in learning representation of vector-field data (Battiloro, R., et al. 2024)

 $W \sim V$

The Many Facets of Diffusion Diffusion in computational topology • Let X be a simplicial complex or a regular cell complex The simplicial chain complex $C_0(\mathbb{X}) \stackrel{\partial}{\leftarrow} C_1($ where $\partial([i_0i_1\cdots i_k]) = \sum_{k=1}^{k} (-1)^j [i_0i_1\cdots \hat{i_j}\cdots i_k]$. Let $d = \partial^*$ be the adjoint of the boundary map.

- Eckmann (1994) suggested a Hodge theory with $\Delta = \partial d + d\partial$ where Hodge decomposition and Hodge theorem ker $\Delta \cong H_k(\mathbb{X}; \mathbb{R})$ still hold.
- ODE $\dot{\mathbf{x}} = -\Delta \mathbf{x}$ converges to a harmonic homology class for any $\mathbf{x}(0) \in C_k(\mathbb{X})$ This theory is extended to cellular sheaves which generalizes both the combinatorial
- Hodge Laplacian and the connection Laplacian (Hansen & Ghrist, 2019)

$$(\mathbb{X}) \stackrel{\partial}{\leftarrow} \cdots \stackrel{\partial}{\leftarrow} C_k(\mathbb{X}) \stackrel{\partial}{\leftarrow} \cdots$$

Network Sheaves

Network Sheaf Theory

- Let X be a graph (general theory of cellular for regular cell complexes). Let $\mathcal{J}^{op} = (X, \leq)$ be a partial order given by the transitive closure of incidence relation $v \leq e \geq w$ if e = (v, w) is an edge with boundary $\partial(e) = \{v, w\}$
- Suppose & is a data category.
 - A network sheaf on X valued in C is presheaf:
 - A network cosheaf is a copresheaf: $\overline{F} : \mathcal{J} \to \mathcal{C}$
 - The object $F_v := \underline{F}v = \overline{F}v$ is called the *stalk* at v
 - The maps

 $\underline{F}_{e \succeq v} : F_v \to F_e$ $\overline{F}_{v \triangleleft e} : F_e \to F_v$

are called *restriction* & corestriction maps

• The global sections of \underline{F} is defined as $\lim \underline{F}$ which can be identified as the cone

 $\Gamma(\mathbb{X};\underline{F}) = \left\{ (x_v, x_{v,e})_{v \in V, e \in E} : \underline{F}_{e \succeq v}(x_v) = x_{e,v}, x_{e,v} = x_{e,w}, \quad \forall e = (v, w) \right\}.$ **Remark.** F is actually a sheaf if we put the Alexandrov topology on \mathcal{J} and if \mathcal{C} is complete. Category of sheaves on $Alex(\mathcal{J})$ equivalent to $[\mathcal{J}^{op}, \mathcal{C}]$ (Curry 2014).

$$\underline{F}:\mathcal{J}^{\mathrm{op}}\to \mathcal{C}$$

Network Sheaf Theory $\mathcal{C} = \mathcal{H}ilb$

• Suppose \mathscr{C} is the category \mathscr{H} ilb of Hilbert spaces and <u>F</u> is a network sheaf over X valued in \mathscr{H} ilb and suppose \overline{F} is the network cosheaf where $\overline{F}_{v \leq e}$ is $\underline{F}_{e \geq v}^*$ (linear adjoint) • $C^0(X;\underline{F}) = \bigoplus_{v \in X_0} F_v$ and $C^1(X;\underline{F}) = \bigoplus_{e \in X_1} F_e$ are the 0 and 1 -cochains with coboundary map $(d\mathbf{x})_e = \sum_{v} [v:e] \underline{F}_{v \triangleleft e}(x_v)$

where $[v:e] = \pm 1$ according to orientation • Then, the sheaf Laplacian is the map $\mathscr{L}: C^0(\mathbb{X};\underline{F}) \to C^0(\mathbb{X};\underline{F})$ defined $\mathscr{L} = d^*d$, or, explicitly • $\underline{F}_{e \triangleleft v} = \overline{F}_{v \triangleleft e} = I$ implies \mathscr{L} is the graph Laplacian $\dot{\mathbf{x}} = -\mathscr{L}\mathbf{x}$ converges to orthogonal projection onto $\left\{ \mathbf{x} : \underline{F}_{e \triangleright v}(x_v) = \underline{F}_{e \triangleright w}(x_v) \right\}$

- $(\mathscr{L}\mathbf{x})_{v} = \sum_{w \triangleleft e \triangleright v} \left(\overline{F}_{v \triangleleft e} \circ \underline{F}_{e \triangleright v} \right) (x_{v}) \left(\overline{F}_{v \triangleleft e} \circ \underline{F}_{e \triangleright w} \right) (x_{w})$
- $\overline{F}_{v \leq e} \underline{F}_{e \geq v} = w_{v,w} O_{v,w}$ for $O_{v,w} \in O(d)$, $w_{v,w} > 0$ implies \mathcal{L} is the graph connection Laplacian **Theorem** (Ghrist & Hansen 2019; Ghrist & Gould TBD). For any initial condition $\mathbf{x}(0) \in C^0(\mathbb{X}; \underline{F})$,

$$(x_w), \quad \forall e = (v, w) \} \cong \Gamma(X; \underline{F})$$

Quantale Enriched Category Theory

15

Quantale Enriched Category Theory Quantales

- A complete lattice Q is a partially ordered set (Q, \leq) such that the supremum $\bigvee_{s \in S} s$ exists for every subset $S \subseteq Q$.
- $p \otimes \left(\bigvee_{q \in S} q\right) = \bigvee_{q \in S} (p \otimes q), \quad \forall S \subseteq S \forall p \in Q$ $\left(\bigvee_{q \in S} q\right) \otimes p = \bigvee_{q \in S} (q \otimes p), \quad \forall S \subseteq S \forall p \in Q$

- In a complete lattice, the meet (Λ) can be always be written as a join (\vee) on downsets A quantale is a complete lattice with the structure of a monoid $(Q, \otimes, 1)$ such that ► $[-, -]: Q \times Q \rightarrow Q$ defined by $p \otimes q \leq r$ iff $q \leq [p, r]$ (Adjoint Functor Theorem)
- Q is unitally bounded if 1 is the terminal object

Assumption. We assume Q is a unitally-bounded commutative quantale.

Quantale Enriched Category Theory Quantales

► Facts: • If $p \leq q$, then $r \otimes q \leq r \otimes q$ • $\left[p, \bigwedge_{q \in S} q\right] = \bigwedge_{q \in S} [p, q]$ Examples of quantales: • Locales: $p \land (\bigvee_{q \in S} q) = \bigvee_{q \in S} (p \land q)$ • Boolean algebra: $Q = \{0,1\}$ • Extended positive reals: $[0,\infty]$ with + under the opposite order \geq • Unit interval: Q = [0,1] with a t-norm structure (Hoffman & Reis, 2012) $s \otimes t = s \cdot t$ $s \otimes t = \max(s + t - 1, 0);$ $s \otimes t = \min(s, t)$

Quantale Enriched Category Theory Q-Categories

- Suppose Q is a quantale. A Q-category \mathcal{C} is a category enriched in Q• Objects: $(\mathcal{C})_0$ is arbitrary
 - Morphisms: $\hom_{\mathscr{C}}(x, y) \in Q$
 - $\hom_{\mathscr{C}}(x, y) \leq \hom_{\mathscr{D}}(Fx, Fy)$
- Composition Law: $\hom_{\mathscr{C}}(y, z) \otimes \hom_{\mathscr{C}}(x, y) \leq \hom_{\mathscr{C}}(x, z)$ • Unit Law: $1 \leq \hom_{\mathscr{C}}(x, x)$ (equality if Q is unitary bounded) ► A *Q*-funtor between *Q*-categories \mathscr{C} and \mathscr{D} is a function $F : (\mathscr{C})_0 \to (\mathscr{D})_0$ such that

for all $x, y \in (\mathscr{C})_0$

- A *Q*-adjunction between *Q*-categories \mathscr{C} and \mathscr{D} are *Q*-functors $F : \mathscr{C} \to \mathscr{D}$ and $G : \mathscr{D} \to \mathscr{C}$ such that $\hom_{\mathscr{D}}(Fx, y) = \hom_{\mathscr{C}}(x, Gx)$
- ► Examples:
 - {0,1}-categories are preorders and {0,1}-functors are monotone maps • $[0,\infty]$ -categories are Lawvere metric spaces and $[0,\infty]$ -functors are non-expansive mappings. Duke

Quantale Enriched Category Theory More examples of *Q*-categories

- Q is a Q-category with $(Q)_0 = Q$ and hom
- Let S be a set. Then, S is a Q-category wit
- Let \mathscr{C} be a Q-category. Then, \mathscr{C}^{op} is a Q-category. $\hom_{\mathscr{C}^{op}}(x,y) = \hom_{\mathscr{C}}(y,x)$

and morphisms

 $\hom_{i\in I} \mathscr{C}_i \Big((x_i)_{i\in I},$

$$\begin{split} \underline{Q}(p,q) &= [p,q] \\ h(S)_0 &= S \text{ and } \hom_S(a,b) = \begin{cases} 1, & a = b \\ 0, & a \neq b \\ ategory \text{ with } (\mathscr{C}^{op})_0 &= (\mathscr{C})_0 \text{ and} \end{cases}$$

• Suppose $(\mathscr{C}_i)_{i \in I}$ is a collection of Q-categories. Then, $\prod_{i \in I} \mathscr{C}_i$ is a Q-category with objects $\left(\prod_{i \in I} \mathscr{C}_i\right)_0 = \prod_{i \in I} (\mathscr{C}_i)_0$

$$(y_i)_{i \in I}$$
 = $\bigwedge_{i \in I} \hom_{\mathscr{C}_i} (x_i, y_i)$

Quantale Enriched Category Theory Q-Categories (continued)

• Suppose \mathscr{C} and \mathscr{D} are Q-categories. Then, $[\mathscr{C}, \mathscr{D}]$ is a Q-category with objects

and morphism

• Suppose \mathscr{C} is a Q-category. Then, $\hat{\mathscr{C}} := [\mathscr{C}^{op}, Q]$ is the category of presheaves. • Suppose \mathscr{C} is a Q-category. Then, $\check{\mathscr{C}} := [\mathscr{C}, Q]$ is the category of copresheaves.

 $([\mathscr{C},\mathscr{D}])_0 = \{F: \mathscr{C} \to \mathscr{D}\}$

 $\hom_{[\mathscr{C},\mathscr{D}]}(F,G) = \bigwedge_{x \in (\mathscr{C})_0} \hom_{\mathscr{D}}(Fx,Gx)$

Quantale Enriched Category Theory Weighted meets and joins

- Suppose \mathscr{C} is a *Q*-category, \mathscr{D} is a set, and suppose $D : \mathscr{D} \to \mathscr{C}$ and $W : \mathscr{D} \to Q$ are functions. • The meet of F weighted by W is an object $\bigwedge_{d \in \mathscr{D}}^{W} Dd \in (\mathscr{C})_{0}$ with the universal property: $\hom_{\mathscr{C}}(x, \bigwedge_{d\in\mathscr{D}}^{W} Dd) = \bigwedge_{d\in\mathscr{D}} [Wd, \hom_{\mathscr{C}}(x, Dd)]$
 - The join of F weighted by W is an object $\bigvee_{d\in\mathscr{D}}^{W} Dd \in (\mathscr{C})_0$ with the universal property: $\hom_{\mathscr{C}}(\bigvee_{d\in\mathscr{D}}^{W}Dd, x) = \bigwedge_{d\in\mathscr{D}}[Wd, \hom_{\mathscr{C}}(Dd, x)]$

Then,

 $\hom_{\mathscr{C}'}(x, R \bigwedge_{d \in \mathscr{D}}^{W} Dd) =$

Lemma. Right Q-adjoints preserve weighted meets. Left Q-adjoints preserve weighted joins. *Proof.* Suppose $R: \mathscr{C} \to \mathscr{C}'$ and consider the diagram $D: \mathscr{D} \to (\mathscr{C})_0$ with weight $W: \mathscr{D} \to Q$.

$$\begin{aligned} &\hom_{\mathscr{C}} \left(Lx, \bigwedge_{d \in \mathscr{D}}^{W} Dd \right) \\ &\bigwedge_{d \in \mathscr{D}} \left[Wd, \hom_{\mathscr{C}} (Lx, Dd) \right] \\ &\bigwedge_{d \in \mathscr{D}} \left[Wd, \hom_{\mathscr{C}'} (x, RDd) \right] \\ &\hom_{\mathscr{C}'} \left(x, \bigwedge_{d \in \mathscr{D}}^{W} RDd \right) \end{aligned}$$

Categorical Network Diffusion

Categorical Network Diffusion QCat-enriched categories

- ► A *QCat*-category consists of
 - a collection $(\mathscr{C})_0$
 - for each pair $X, Y \in (\mathcal{C})_0$ a Q-category $\operatorname{Hom}_{\mathcal{C}}(X, Y)$
- $F_{X,Y}$: Hom_{\mathscr{C}} $(X,Y) \to \text{Hom}_{\mathscr{D}}(FX,FY)$ satisfying the compatibility conditions
 - $F_{X,X}(id_X) \cong id_{FX}$
 - $F_{Y,Z}(g) \circ F_{X,Y}(f) \cong F_{X,Z}(g \circ f)$
- Example: *QCat* is the category where objects are *Q*-categories and where hom objects are

• For every triple $X, Y, Z \in (\mathcal{C})_0$, a Q-functor $\circ_{X,Y,Z} : \operatorname{Hom}_{\mathscr{C}}(Y,Z) \times \operatorname{Hom}_{\mathscr{C}}(X,Y) \to \operatorname{Hom}_{\mathscr{C}}(X,Z)$ • A pseudofunctor $F: \mathscr{C} \to \mathscr{D}$ between *QCat*-categories is a function $F: (\mathscr{C})_0 \to (\mathscr{D})_0$ and a *Q*-functor

 $\operatorname{Hom}_{O\mathscr{C}at}(\mathscr{C},\mathscr{D}) = [\mathscr{C},\mathscr{D}]$

▶ Suppose \mathscr{C} and \mathscr{D} are *QCat*-categories and $F: \mathscr{C} \to \mathscr{D}, W: \mathscr{C} \to Q\mathcal{C}at$ are pseudofunctors. Then, the limit of F weighted by W is an object $\lim^{W} F \in (\mathcal{D})_{0}$ such that the following is an isomorphism $\operatorname{Hom}_{\mathscr{D}}(X, \lim^{W} F) \cong [\mathscr{C}, \underline{\mathcal{QCat}}] \Big(W, \operatorname{Hom}(X, F-) \Big)$ Duke

Categorical Network Diffusion *QCat*-valued (co)presheaves

• We consider a pair consisting of a presheaf $\underline{F}: \mathcal{J}^{op} \to QCat$ and copresheaf $\overline{F}: \mathcal{J} \to QCat$ • \underline{F} and \overline{F} map nodes/edges to Q-categories • We assume that $\underline{F}v = \overline{F}v = F_v$ and $\underline{F}e = \overline{F}e = F_e$ for all nodes $v \in X_0$ & edges $e \in X_1$ • $\underline{F}_{e \triangleleft v}$ is a *Q*-functor between *Q*-categories F_v and F_e • $\overline{F}_{v \triangleleft e}$ is a *Q*-functor between *Q*-categories F_e and F_v • We also consider the data of a weighting $W : \mathbb{X}_0 \times \mathbb{X}_0 \to Q$ ► Parallel transport defined for a path $\operatorname{tr}_{\gamma} : F_{\nu_1} \to F_{\nu_{\ell}}$ (Bodnar et al, 2022) Consider a path $\gamma = v_1 \leq e_1 \geq v_2 \leq e_2 \geq \cdots \leq e_{\ell-1} \geq v_\ell$ in X. Then, $\operatorname{tr}_{\gamma}$ is defined $\operatorname{tr}_{\gamma} := \overline{F}_{v_{\ell} \leq e_{\ell-1}} \underbrace{F}_{e_{\ell-1} \geq v_{\ell-1}} \cdots \overline{F}_{v_3 \leq e_2} \underbrace{F}_{e_1 \geq v_2} \overline{F}_{v_2 \leq e_1} \underbrace{F}_{e_1 \geq v_1}$

Categorical Network Diffusion Weighted Global Sections

- Let * be the 1-object *Q*-category
- For e = (v, w) let $\Delta(e)$ be the *Q*-category with objects $(\Delta(e))_0 = \{v, w\}$ and $\hom_{\Delta(e)}(v,w) = W(v,w), \hom_{\Delta(e)}(w,v) = W(w,v)$
- $(\Delta(e))_0 = \partial(e)$ and let $\tilde{W}(e \ge v)$ be the functor $* \to \Delta(e)$ which picks out the object v.
- Define $\tilde{W}: \mathcal{J}^{op} \to Q\mathcal{C}at$ by sending nodes $v \in (\mathcal{J})_0$ to * and edges $e \in (\mathcal{J})_0$ to $\Delta(e)$ with ► Let $\Gamma^W(X;\underline{F}) := \lim^W \underline{F}$ which is a Q-category, a subcategory of $\prod_{i \in (\mathcal{F})_0} \underline{F}j$

Categorical Network Diffusion Weighted global sections (continued)

- ► Define W-global sections to be elements $(x_v)_{v \in X_0} \in \prod_{v \in X_0} F_v$ such that for every e = (v, w) we have
- $W(v, w) \leq \hom_{F_e}(\underline{F}_{e \triangleright v}(x_v), \underline{F}_{e \triangleright w}(x_w))$ $W(w, v) \leq \hom_{F_e}(\underline{F}_{e \triangleright w}(x_w), \underline{F}_{e \triangleright v}(x_v))$ ► Remark: if W(u, v) = 1 for all $(u, v) \in X_0^2$, then $\hom_{F_e}\left(\underline{F}_{e \triangleright v}(x_v), \underline{F}_{e \triangleright w}(x_w)\right) = \hom_{F_e}\left(\underline{F}_{e \triangleright w}(x_w), \underline{F}_{e \triangleright v}(x_v)\right) = 1$ which implies $\underline{F}_{e \triangleright_{v}}(x_{v}) = \underline{F}_{e \triangleleft_{w}}(x_{w}).$

Theorem. The objects of $\Gamma^{W}(\mathbb{X};\underline{F})$ are W-global sections. Furthermore,

 $\hom_{\Gamma(\mathbb{X};\underline{F})}((x_v)_{v\in\mathbb{X}_0},(y_v)_{v\in\mathbb{X}_0}) = \bigwedge \hom_{F_v}(x_v,y_v)$ $v \in \mathbb{X}_0$

Categorical Network Diffusion Tarski Laplacian

Definition. Given the data $\underline{F}: \mathscr{J}^{op} \to Q\mathscr{C}$ $\overline{F}: \mathcal{J} \to QCat$ the Tarski Laplacian is the map $\mathscr{L}: \prod_{v \in \mathbb{X}}$ $(\mathscr{L}\mathbf{X})_{v} =$

where $\mathbf{x} = (x_v)_{v \in \mathbb{X}_0}$. **Theorem**. \mathcal{L} is a functor of Q-categories. *Proof.* Need to show $\lim_{v \in X_0} (\mathbf{x}, \mathbf{y}) \leq \operatorname{hor}$ Use that F and \overline{F} are Q-functors and need a lemma about weighted limits.

$$\frac{P_{exp}}{E} \quad W: X_0 \times X_0 \to Q, \\
\frac{P_{exp}}{E} \quad F_v \to \prod_{v \in X_0} F_v \text{ given by} \\
\frac{W(v, -)}{M} \quad \overline{F}_{v \leq e} \underline{F}_{e \geq w}(x_w) \\
\frac{P_{exp}}{E} \quad W = W$$

$$\mathrm{m}_{\prod_{v\in\mathbb{X}_0}}(\mathscr{L}(\mathbf{x}),\mathscr{L}(\mathbf{y})).$$

Interlude Analogy between adjoint linear maps and adjoint functors ▶ Suppose \mathscr{C} and \mathscr{D} are Q-categories. Recall, $L \dashv R$ is an adjuction when $\hom_{\mathscr{D}}(Lx, y) = \hom_{\mathscr{C}}(x, Ry) \text{ for all } x \in (\mathscr{C})_0, y \in (\mathscr{D})_0$

Suppose V and W are \mathbb{R} -vector spaces. Then, $L: V \to W$ has a linear adjoint when

 $\langle Lx, y \rangle = \langle x, L^*y \rangle$ for all $x \in V, y \in W$

Categorical Network Diffusion **Computing Global Sections**

Definition. Suppose $q \in Q$. Let $S_q(\mathscr{L})$ denote the subcategory of $\prod_{v \in X_0} F_v$ spanned by $\mathbf{x} = (x_v)_{v \in X_0}$ such that

Lemma. Suppose $\underline{F}_{e \succeq v} \dashv \overline{F}_{v \succeq e}$ for every incidence $v \trianglelefteq e$ in \mathscr{J}^{op} . Then, $\vec{x} \in S_q(\mathscr{L})$ if and only if $\hom_{F_e}(\underline{F}_{e \triangleright v}(x_v), \underline{F}_{e \triangleright w}(x_w)) \geq q \otimes W(v, w) \text{ for every } e = (v, w) \in \mathbb{X}_1$ Proof. We have

$$\operatorname{hom}_{V \in \mathbb{X}_0} F_v(\vec{x}, \mathscr{L}\vec{x}) = \bigwedge_{v \in \mathbb{X}_0} \operatorname{hom}_{F_v}(x_v, \mathscr{L}(\vec{x})_v)$$

 $= \bigwedge_{v \in X_0} h$

 $= \bigwedge_{v \in \mathbb{X}_0} \bigwedge$

$$\operatorname{hom}_{V \in \mathbb{X}_0} F_v(\mathbf{x}, \mathscr{L}\mathbf{x}) \geq q$$

$$\bigwedge_{v \in \mathbb{X}_{0}} \hom_{F_{v}} \left(x_{v}, \bigwedge_{v \leq e \geq w}^{W(v,-)} \overline{F}_{v \leq e} \underline{F}_{e \geq w}(x_{w}) \right)$$

$$\bigwedge_{v \in \mathbb{X}_{0}} \bigwedge_{v \leq e \geq w} \left[W(v,w), \hom_{F_{v}} \left(x_{v}, \overline{F}_{v \leq e} \underline{F}_{e \geq w}(x_{w}) \right) \right]$$

Categorical Network Diffusion Computing Global Sections

Proof (continued).

 $= \bigwedge_{v \in \mathbb{X}_0} \bigwedge$

 $\geq q$

if and only if $\Big[W(v,w), \hom_{F_e} \Big(\underline{F}_{e \succeq v}(x_v), \underline{F}_{e \notin v}(x_v) \Big] \Big]$ if and only if $\hom_{F_v}(\underline{F}_{e \triangleright w}(x_v), \underline{F}_{e \triangleright w}(x_w)) \geq q \otimes W(v, w) \text{ for all } e = (v, w) \in \mathbb{X}_1. \square$

$$_{e \ge w}(x_w) \Big) \Big| \ge q \text{ for all } e = (v, w) \in \mathbb{X}_1$$

Categorical Network Diffusion Hodge-Tarski Theorem

Theorem. Given the data

 $W: \mathbb{X}$ suppose $\underline{F}_{e \triangleright v} \dashv \overline{F}_{v \succeq e}$ for every incidence v

• Compare to the Hodge Theorem:

• Compare to the Hodge Theorem for network sheaves ($\mathcal{C} = \mathcal{H}ilb$):

$$\underline{F}: \mathscr{J}^{op} \to \underline{\mathscr{QCat}}$$

$$\overline{F}: \mathscr{J} \to \underline{\mathscr{QCat}} ,$$

$$W: X_0 \times X_0 \to Q$$

$$\text{nce } v \trianglelefteq e \text{ in } \mathscr{J}^{op}. \text{ Then, } \Gamma^W(X; \underline{F}) \cong S_1(\mathscr{L}).$$

 $H^0_{dR}(\mathbb{M};\mathbb{R})\cong \ker \Delta_0$

 $\Gamma(\mathbb{X};\underline{F}) \cong \ker \Delta_0$

Categorical Network Diffusion Tarski Fixed Point Theorem

Theorem. Suppose \mathscr{C} is a Q-category and $\mathscr{L}: \mathscr{C} \to \mathscr{C}$ is a Q-functor. Suppose \mathscr{C} has all weighted joins. Then, for every $q \in Q$, the category $S_q(\mathcal{L})$ generated by $x \in (\mathcal{C})_0$ such that $\hom_{\mathscr{C}}(x,\mathscr{L}x) \geq q$ has all weighted meets and joins.

 $\Gamma^{W}(\mathbb{X};\underline{F}) \cong S_{1}(\mathscr{L})$ has all weighted meets and joins.

Work in progress to prove similar result for categories enriched in an arbitrary cosmos cosmos = bicomplete closed symmetric monoidal

Corollary. Suppose $F_v \in (QCat)_0$ has all weighted meets and joins for all $v \in X_0$. Then,

Applications

Applications Logic, engineering, & economics

- Applications with $F_v = [\mathscr{C}^{op}, Q]$ for \mathscr{C} a discrete Q-category
 - $Q = \{0,1\}$, network multi-modal logic (R. & Ghrist, 2022)
 - $Q = [-\infty, \infty]$, synchronization of max-plus linear systems (R., Zavlanos, 2023)
 - Q = [0,1], distributed fuzzy formal concept analysis (Ghrist & Lopez, TBD)
- Other applications
 - Q-valued preference relations

• network preference dynamics (R., Ghrist, Henselman-Petrusek, Bell, Zavlanos, 2024)

Thank You Any questions?

Hans Riess Autonomous Systems Laboratory Duke University Email: <u>hans.riess@duke.edu</u> X/Twitter: @hansmriess Website: <u>hansriess.com</u>