Towards Categorical Diffusion Toposes in Mondovi, Grothendieck Institute, September 2024

Hans Riess Autonomous Systems Laboratory Duke University

Email: hans.riess@duke.edu X/Twitter: @hansmriess Website: hansriess.com

Joint work with Robert Ghrist, Miguel Lopez & Paige Randall-North

Talk Outline

- ‣ Many views on diffusion
	- ๏ Hodge Laplacian
	- ๏ Graph/graph connection Laplacian
	- ๏ Combinatorial Hodge Laplacian
- ‣ Network sheaves
	- ๏ Global sections
	- ๏ Sheaf Laplacian
- ‣ ^Quantale-enriched categories
	- ๏ Quantales
	- \circ Q-categories
	- ๏ Weighted meets/joints
- \circ *Q* & *at*-categories
- \circ *Q* & *at*-valued (co) presheaves
- ๏ Weighted global sections
- ๏ Tarski Laplacian
- ๏ Hodge-Tarski Theorem
- ๏ Tarski Fixed Point Theorem

‣Categorical network diffusion

‣ Applications

The Many Facets of Diffusion

The Many Facets of Diffusion Diffusion in physics

- ▶ Diffusion is central concept in thermodynamics. Heat equation, $\partial_t x = \alpha \nabla^2 x$ with
- ▶ Diffusion generalized to *manifolds*. Suppose M is a *m-*dimensional Riemannian manifold. The deRahm complex is the complex

 $\Omega^0(\mathbb{M}) \stackrel{d}{\rightarrow} \Omega^1$

where $\Omega^k(\mathbb M)$ is the Hilbert space of differential forms and d is the exterior derivate. $\bullet \Delta = d\partial + \partial d$ where $\partial = d^*$ is the linear adjoint

 $\omega = \alpha + \beta + \gamma$ where $\alpha \in \text{im } d, \beta \in \text{im } \partial, \gamma \in \text{ker } \Delta$ H **odge Theorem.** $H_{dR}^k(\mathbb{M}; \mathbb{R}) \cong \ker \Delta_k$ $\Delta_0 = d^*d$ is the *Laplace-Beltrami* operator and generalizes the classical Laplacian.

Laplacian ∇^2 models change of temperature or concentration in Euclidean space over time *m*

$$
(\mathbb{M}) \stackrel{d}{\rightarrow} \cdots \stackrel{d}{\rightarrow} \Omega^m(\mathbb{M}) \stackrel{d}{\rightarrow} 0
$$

The Many Facets of Diffusion Diffusion in graph theory

-
- ► Two nodes $v, w \in \mathbb{X}_0$ are adjacent, written $v \sim w$, if $(v, w) \in \mathbb{X}_1$. Let $\deg(v)$ be the number adjacent nodes
- ‣The adjacency matrix of a graph is defined

 $A_{v,w} = \{$

► Let $(B_k)_{k\geq 0}$ be a *random walk* on \mathbb{X} ; B_0 chosen uniformly at random. The transition matrix of this Markov chain is

- ‣The matrix is the *normalized graph Laplacian for random walks;* leads to heat equations *L* = *I* − *D*−¹ *A*
	- \bullet *C*ontinuous time, $\partial_t x = -Lx$
	- Discrete time, $U_k = \left(\mathbb{E} \left[x(B_k) \, | \, B_0 = v \right] \right)_{v \in \mathbb{X}_0}$

► Suppose $X = (X_0, X_1)$ is an undirected graph with $|X_0| = n$ and with label function $x : X_0 \to \mathbb{R}$.

1, $v \sim w$ 0, otherwise

 $= \mathbb{P}(B_k = w | B_{k-1} = v) = \{$ 1 deg(*v*) , *w* ∼ *v* 0, otherwise

$$
P_{v,w} = \mathbb{P}(B_k = w \,|\, B_k)
$$

The Many Facets of Diffusion Diffusion in discrete geometry

- ‣Vector diffusion map generalizing random walks on graph with vector features (Singer & Wu 2012)
- Graph connection Laplacian $\mathcal{L}_{con} = I \mathcal{D}^{-1} \mathcal{A}$ where $\mathscr{L}_{con} = I - \mathscr{D}^{-1}$ $[v, w] = \sum_{v,w} w_{v,w} O_{v,w} x_w$ *w*∼*v*
	- for parallel transport maps $O_{v,w} \in O(d)$.
- \blacktriangleright Heat equation is $\partial_t \mathbf{x} = \mathscr{L} \mathbf{x}$ where $\partial_t \mathbf{x} = -\mathscr{L} \mathbf{x}$ where $\mathbf{x}(0) = (\mathbb{R}^d)^n$
- ‣Useful in learning representation of vector-field data (Battiloro, R., et al. 2024)

- Eckmann (1994) suggested a Hodge theory with $\Delta = \partial d + d\partial$ where Hodge decomposition and Hodge theorem ker $\Delta \cong H_k(\mathbb{X}; \mathbb{R})$ still hold. *j*=0 $\Delta = \partial d + d\partial$
- \blacktriangleright ODE $\dot{\mathbf{x}} = -\Delta \mathbf{x}$ converges to a harmonic homology class for any ‣This theory is extended to cellular sheaves which generalizes **both the combinatorial** $\dot{\mathbf{x}} = -\Delta \mathbf{x}$ converges to a harmonic homology class for any $\mathbf{x}(0) \in C_k(\mathbb{X})$
- **Hodge Laplacian** and the **connection Laplacian** (Hansen & Ghrist, 2019)

The Many Facets of Diffusion Diffusion in computational topology \blacktriangleright Let $\mathbb X$ be a simplicial complex or a regular cell complex ‣The simplicial chain complex $C_0(\mathbb{X}) \stackrel{\partial}{\leftarrow} C_1(\mathbb{X})$ $\partial([i_0 i_1 \cdots i_k]) =$ *k* ∑ $(-1)^{j} [i_0 i_1 \cdots \hat{i_j} \cdots i_k].$ Let $d = \partial^*$ ̂

$$
(\mathbb{X}) \stackrel{\partial}{\leftarrow} \cdots \stackrel{\partial}{\leftarrow} C_k(\mathbb{X}) \stackrel{\partial}{\leftarrow} \cdots
$$

where $\partial([i_0 i_1 \cdots i_k]) = \sum (-1)^j [i_0 i_1 \cdots \hat{i}_i \cdots i_k]$. Let $d = \partial^*$ be the adjoint of the boundary map.

- ► Let \times be a graph (general theory of cellular for regular cell complexes). Let $\mathcal{J}^{op} = (\mathbb{X}, \leq)$ be a partial order given by the transitive closure of incidence relation $v \le e \ge w$ if $e = (v, w)$ is an edge with boundary $\partial(e) = \{v, w\}$
- \blacktriangleright Suppose $\mathscr C$ is a data category.
	- A *network sheaf* on X valued in $\mathscr C$ is presheaf:
	- \bullet A network cosheaf is a copresheaf: \overline{F} : $\mathscr{J} \rightarrow$
	- The object $F_v := Fv = \overline{F}v$ is called the *stalk* at v
	- ๏ The maps

F $e_{\geq v}: F_v \to F_e$ $F_{v\trianglelefteq e}: F_e \rightarrow F_v$

are called *restriction* & *corestriction* maps

 \blacktriangleright The global sections of \underline{F} is defined as lim \underline{F} which can be identified as the cone \underline{F} is defined as $\lim \underline{F}$

 $\Gamma(\mathbb{X}; F) = \{(x_v, x_{v,e})_{v \in V, e \in E} : F_{e \ge v}(x_v) = x_{e,v}, x_{e,v} = x_{e,w}, \forall e = (v, w)\}.$ **Remark.** F is actually a sheaf if we put the Alexandrov topology on $\mathcal J$ and if $\mathcal C$ is complete. Category of sheaves on Alex(\mathcal{J}) equivalent to $[\mathcal{J}^{op}, \mathcal{C}]$ (Curry 2014).

$$
\underline{F}:\mathcal{J}^{\mathrm{op}}\to\mathcal{C}
$$

Network Sheaf Theory

Network Sheaf Theory $\mathscr{C} = \mathscr{H}ilb$

▶ Suppose $\mathcal C$ is the category $\mathcal Xilb$ of Hilbert spaces and $\underline F$ is a network sheaf over $\mathbb X$ valued in and suppose \overline{F} is the network cosheaf where $\overline{F}_{v\leq e}$ is $\underline{F}_{e\succeq v}^*$ (linear adjoint) ► $C^0(\mathbb{X}; \underline{F}) = \bigoplus_{v \in \mathbb{X}_0} F_v$ and $C^1(\mathbb{X}; \underline{F}) = \bigoplus_{e \in \mathbb{X}_1} F_e$ are the 0 and 1 -cochains with coboundary map Hilbert spaces and F is a network sheaf over X valued in Hilb ℓ $(d\mathbf{x})_e = \sum_{v_e} [v : e] E$ $\big|_{v \leq e} (x_v)$

where $[v : e] = \pm 1$ according to orientation ▶ Then, the *sheaf Laplacian* is the map $\mathcal{L}: C^0(\mathbb{X}; \underline{F}) \to C^0(\mathbb{X}; \underline{F})$ defined $\mathcal{L} = d^*d$, or, explicitly $\sum_{\rho \leq v} E_{\rho \leq v} = \overline{F}_{v \leq e} = I$ implies $\mathcal L$ is the graph Laplacian converges to orthogonal projection onto **x** = − ℒ**x** $P_{e \leq v} = F_{v \leq e} = I$ implies \mathcal{L} $\{x : F$

- $(\mathscr{L}\mathbf{x})_v = \sum_{w \leq e \geq v} (F_{v \leq e} \circ \underline{F}_{e \geq v})(x_v) (F_{v \leq e} \circ \underline{F}_{e \geq w})(x_v)$
- Φ $\overline{F}_{v \le e} F_{e \ge v} = w_{v,w} O_{v,w}$ for $O_{v,w} \in O(d)$, $w_{v,w} > 0$ implies $\mathscr L$ is the graph connection Laplacian **Theorem** (Ghrist & Hansen 2019; Ghrist & Gould TBD). For any initial condition $\mathbf{x}(0) \in C^0(\mathbb{X}; \underline{F})$, $\dot{\mathbf{x}} = -\mathcal{L}\mathbf{x}$ converges to orthogonal projection onto

$$
\mathcal{L}_{e \succeq v}(x_v) = \underline{F}_{e \succeq w}(x_w), \quad \forall e = (v, w) \} \cong \Gamma(\mathbb{X}; \underline{F})
$$

Quantale Enriched Category Theory

15

Quantale Enriched Category Theory Quantales

- A complete lattice Q is a partially ordered set (Q, \leq) such that the supremum $\bigvee_{s \in S} s$ exists for every subset $S \subseteq Q$. *Q* is a partially ordered set (*Q*, \leq) such that the supremum $\bigvee_{s\in S} s$
- \blacktriangleright In a complete lattice, the meet (\bigwedge) can be always be written as a join (\bigvee) on downsets A) can be always be written as a join (V $(Q,\otimes,1)$ $p \otimes (\bigvee_{q \in S} q) = \bigvee_{q \in S} (p \otimes q)$ $(\bigvee_{q\in S} q) \otimes p = \bigvee_{q\in S} (q \otimes p)$, ∀*S* ⊆ *S* ∀*p* ∈ *Q* $[-,-]: Q \times Q \rightarrow Q$ defined by $p \otimes q \le r$ ift $q \le [p,r]$
-
-
- A quantale is a complete lattice with the structure of a monoid $(Q, \otimes, 1)$ such that \blacktriangleright [-,-]: $Q \times Q \rightarrow Q$ defined by $p \otimes q \le r$ iff $q \le [p,r]$ (Adjoint Functor Theorem)
- \blacktriangleright Q is unitally bounded if 1 is the terminal object Q is unitally bounded if 1

Assumption. We assume Q is a *unitally-bounded commutative quantale.*

Quantale Enriched Category Theory Quantales

 \blacktriangleright Facts: • If $p \leq q$, then $r \otimes q \leq r \otimes q$ \circ $[p, \bigwedge_{q \in S} q] = \bigwedge_{q \in S} [p, q]$ Examples of quantales: • Locales: $p \wedge (\bigvee_{q \in S} q) = \bigvee_{q \in S} (p \wedge q)$ \bullet Boolean algebra: $Q = \{0,1\}$ • Extended positive reals: $[0,\infty]$ with $+$ under the opposite order \geq \bullet Unit interval: $Q = [0,1]$ with a t-norm structure (Hoffman & Reis, 2012) $S \otimes t = S \cdot t$ $s \otimes t = \max(s + t - 1,0);$ $s \otimes t = \min(s, t)$

Quantale Enriched Category Theory *Q***-Categories**

- Suppose Q is a quantale. A Q -category $\mathcal C$ is a category enriched in \bullet Objects: $(\mathscr{C})_0$ is arbitrary Q is a quantale. A Q -category $\mathscr C$ is a category enriched in Q
	- \circ Morphisms: hom_{$\mathscr{C}(x, y) \in Q$}
	- Composition Law: $hom_{\mathscr{C}}(y, z) \otimes hom_{\mathscr{C}}(x, y) \le hom_{\mathscr{C}}(x, z)$ Q-funtor between Q-categories $\mathscr C$ and $\mathscr D$ is a function $F: (\mathscr C)_0 \to (\mathscr D)_0$ $hom_{\mathscr{D}}(x, y) \leq hom_{\mathscr{D}}(Fx, Fy)$
	-
- \bullet Unit Law: $1 \le \hom_{\mathscr{C}}(x, x)$ (equality if Q is unitary bounded) \blacktriangleright A Q-funtor between Q-categories $\mathcal C$ and $\mathcal D$ is a function $F: (\mathcal C)_0 \to (\mathcal D)_0$ such that

for all $x, y \in (\mathscr{C})_0$

- A Q-adjunction between Q-categories $\mathcal C$ and $\mathcal D$ are Q-functors $F: \mathcal C \to \mathcal D$ and $G: \mathcal D \to \mathcal C$ such that Q-adjunction between Q-categories $\mathscr C$ and $\mathscr D$ are Q-functors $F:\mathscr C\to\mathscr D$ and $G:\mathscr D\to$ $hom_{\mathscr{D}}(Fx, y) = hom_{\mathscr{D}}(x, Gx)$
- \blacktriangleright Examples:
	- $\{0,1\}$ -categories are preorders and $\{0,1\}$ -functors are monotone maps • [0,∞]-categories are Lawvere metric spaces and [0,∞]-functors are non-expansive mappings.
	-

Quantale Enriched Category Theory More examples of *Q***-categories**

- $\blacktriangleright \underline{Q}$ is a Q-category with $(\underline{Q})_0 = Q$ and Q is a Q-category with $(Q)_0 = Q$ and $\hom_Q(p,q) = [p,q]$
-
- ► Let $\mathcal C$ be a *Q*-category. Then, $\mathcal C^{op}$ is a *Q*-category with $(\mathcal C^{op})_0 = (\mathcal C)_0$ and $hom_{\mathscr{C}^{op}}(x, y) = hom_{\mathscr{C}}(y, x)$
-

\n- ▶
$$
Q
$$
 is a Q -category with $(Q)_0 = Q$ and $\hom_Q(p, q) = [p, q]$
\n- ▶ Let S be a set. Then, S is a Q -category with $(S)_0 = S$ and $\hom_S(a, b) = \begin{cases} 1, & a = b \\ 0, & a \neq b \end{cases}$
\n- ▶ Let \mathcal{C} be a Q -category. Then, \mathcal{C}^{op} is a Q -category with $(\mathcal{C}^{op})_0 = (\mathcal{C})_0$ and
\n

► Suppose $(\mathcal{C}_i)_{i \in I}$ is a collection of *Q*-categories. Then, $\prod_{i \in I} \mathcal{C}_i$ is a *Q*-category with objects $\left(\prod_{i \in I} \mathcal{C}_i\right)_0 = \prod_{i \in I} (\mathcal{C}_i)_0$

and morphisms

 $\lim_{i \in I} \mathcal{C}_i(x_i)_{i \in I}$, (y_i)

$$
(y_i)_{i \in I} = \bigwedge_{i \in I} \hom_{\mathscr{C}_i}(x_i, y_i)
$$

Quantale Enriched Category Theory Q-Categories (continued)

Suppose $\mathscr C$ and $\mathscr D$ are Q-categories. Then, $[\mathscr C,\mathscr D]$ is a Q-category with objects

and morphism

Suppose $\mathscr C$ is a Q-category. Then, $\hat{\mathscr C} := [\mathscr C^{op}, \mathcal Q]$ is the category of presheaves. Suppose $\mathcal C$ is a Q-category. Then, $\check{\mathcal C} := [\mathcal C, \mathcal Q]$ is the category of copresheaves.

 $([\mathscr{C},\mathscr{D}])_0 = \{F:\mathscr{C} \to \mathscr{D}\}\$

 $\hom_{\lbrack \mathscr{C},\mathscr{D} \rbrack}(F,G)=\bigwedge_{x\in\lbrack \mathscr{C}\rbrack_0}\hom_{\mathscr{D}}(Fx,Gx)$

Quantale Enriched Category Theory Weighted meets and joins

- Suppose $\mathscr C$ is a Q-category, $\mathscr D$ is a set, and suppose $D : \mathscr D \to \mathscr C$ and $W : \mathscr D \to Q$ are functions. • The meet of F weighted by W is an object $\bigwedge_{d\in\mathcal{D}}^{W}Dd \in (\mathcal{C})_0$ with the universal property: $\hom_{\mathscr{C}}(x, \bigwedge_{d\in\mathscr{D}}^W Dd) = \bigwedge_{d\in\mathscr{D}}[Wd, \hom_{\mathscr{C}}(x, Dd)]$
	- The join of *F* weighted by *W* is an object $\bigvee_{d \in \mathcal{D}}^W D d \in (\mathcal{C})_0$ with the universal property: $\hom_{\mathscr{C}}(\bigvee_{d\in\mathscr{D}}^W Dd, x) = \bigwedge_{d\in\mathscr{D}}[Wd, \hom_{\mathscr{C}}(Dd, x)]$

Then,

 $hom_{\mathscr{C}}(x, R \bigwedge_{d \in \mathscr{D}}^W Dd)$ = $hom_{\mathscr{C}}(Lx, \bigwedge_{d \in \mathscr{D}}^W Dd)$

Lemma. Right Q -adjoints preserve weighted meets. Left Q -adjoints preserve weighted joins. $\overline{}$ *Proof.* Suppose $R : \mathscr{C} \to \mathscr{C}'$ and consider the diagram $D : \mathscr{D} \to (\mathscr{C})_0$ with weight $W : \mathscr{D} \to Q$.

$$
= \text{hom}_{\mathscr{C}}(Lx, \bigwedge_{d\in\mathscr{D}}^W Dd)
$$

$$
= \bigwedge_{d\in\mathscr{D}} [Wd, \text{hom}_{\mathscr{C}}(Lx, Dd)]
$$

$$
= \bigwedge_{d\in\mathscr{D}} [Wd, \text{hom}_{\mathscr{C}}(x, RDd)]
$$

$$
= \text{hom}_{\mathscr{C}'}(x, \bigwedge_{d\in\mathscr{D}}^W RDd)
$$

Categorical Network Diffusion

Categorical Network Diffusion *Q at***-enriched categories**

- \blacktriangleright A QCat-category consists of *Q at*
	- \bullet a collection $(\mathscr{C})_0$
	- for each pair $X, Y \in (\mathcal{C})_0$ a Q-category $\text{Hom}_{\mathcal{C}}(X, Y)$
	-
- $F_{X,Y}$: $\text{Hom}_{\mathscr{C}}(X,Y) \to \text{Hom}_{\mathscr{D}}(FX,FY)$ satisfying the compatibility conditions
	- \bullet $F_{X,X}(id_X) \cong id_{FX}$
	- ๏ *FY*,*Z*(*g*) ∘ *FX*,*Y*(*f*) ≅ *FX*,*Z*(*g* ∘ *f*)
- \blacktriangleright Example: $\overline{\mathcal{Q}\mathscr{C}}$ is the category where objects are $\mathcal Q$ -categories and where hom objects are *Q Cat* is the category where objects are *Q*
- $Q\mathscr{C}at$ -categories and $F: \mathscr{C} \to \mathscr{D}$, $W: \mathscr{C} \to Q\mathscr{C}at$
	-

• For every triple $X, Y, Z \in (\mathscr{C})_0$, a Q-functor $\circ_{X, Y, Z}: \text{Hom}_{\mathscr{C}}(Y, Z) \times \text{Hom}_{\mathscr{C}}(X, Y) \to \text{Hom}_{\mathscr{C}}(X, Z)$ A pseudofunctor $F : \mathcal{C} \to \mathcal{D}$ between $Q\mathcal{C}at$ -categories is a function $F : (\mathcal{C})_0 \to (\mathcal{D})_0$ and a Q -functor

 $\text{Hom}_{Q\mathscr{C}at}(\mathscr{C},\mathscr{D}) = [\mathscr{C},\mathscr{D}]$

▶ Suppose $\mathcal C$ and $\mathcal D$ are $Q\mathcal C$ at-categories and $F : \mathcal C \to \mathcal D$, $W : \mathcal C \to \underline{Q\mathcal C}$ are pseudofunctors. Then, the limit of F weighted by W is an object $\lim^W F \in (\mathcal{D})_0$ such that the following is an isomorphism $\operatorname{Hom}_{\mathscr{D}}(X, \operatorname{lim}^{W} F) \cong [\mathscr{C}, \underline{\mathcal{Q}}\mathscr{C}at]$ $\left(W, \operatorname{Hom}(X, F-) \right)$ Duke 23

Categorical Network Diffusion QCat-valued (co)presheaves

► We consider a pair consisting of a presheaf \underline{F} : $\mathcal{J}^{op} \to Q\mathcal{C}$ at and copresheaf \overline{F} : $\mathcal{J} \to Q\mathcal{C}$ at \bullet F and F map nodes/edges to Q-categories • We assume that $Fv = F_v = F_v$ and $Fe = Fe = F_e$ for all nodes $v \in X_0$ & edges $e \in X_1$ \bullet F_{e4v} is a Q-functor between Q-categories F_v and F_e • $\overline{F}_{v\Delta e}$ is a Q-functor between Q-categories F_e and F_v ► We also consider the data of a weighting $W: X_0 \times X_0 \rightarrow Q$ Parallel transport defined for a path $\text{tr}_{\gamma}: F_{\nu_1} \to F_{\nu_2}(\text{Bodnar et al, 2022})$ Consider a path $\gamma = v_1 \le e_1 \ge v_2 \le e_2 \ge \cdots \le e_{\ell-1} \ge v_{\ell}$ in X. Then, tr_{γ} is defined $\operatorname{tr}_\gamma := \overline{F}_{\nu_e \trianglelefteq e_{e-1}} F_{e_{e-1}}$

$$
\mathbf{L}v_{e-1}\cdots\overline{F}_{v_3\leq e_2}\underline{F}_{e_1\geq v_2}\overline{F}_{v_2\leq e_1}\underline{F}_{e_1\geq v_1}
$$

Categorical Network Diffusion Weighted Global Sections

- Let* be the 1-object Q-category * *Q*
- $\text{For } e = (v, w) \text{ let } \Delta(e) \text{ be the } Q\text{-category with objects } (\Delta(e))_0 = \{v, w\} \text{ and }$ $\hom_{\Delta(e)}(v, w) = W(v, w), \hom_{\Delta(e)}(w, v) = W(w, v)$ $e = (v, w)$ let $\Delta(e)$ be the Q-category with objects $(\Delta(e))_0 = \{v, w\}$
- $(\Delta(e))_0 = \partial(e)$ and let $\tilde{W}(e \ge v)$ be the functor $* \rightarrow \Delta(e)$ which picks out the object *v*. *W* $\tilde{W}: \mathscr{J}^{op} \to \underline{Q}\mathscr{C}at$ by sending nodes $v\in (\mathscr{J})_0$ to * and edges $e\in (\mathscr{J})_0$ to $\Delta(e)$ $\overline{\widetilde{\lambda}}$ $(e \trianglerighteq v)$ be the functor $^* \rightarrow \Delta(e)$ which picks out the object v
- ► Define $\tilde{W}: \mathcal{J}^{op} \to \mathcal{Q}\mathcal{C}at$ by sending nodes $v \in (\mathcal{J})_0$ to * and edges $e \in (\mathcal{J})_0$ to $\Delta(e)$ with ► Let $\Gamma^W(\mathbb{X}; \underline{F}) := \lim^W \underline{F}$ which is a Q-category, a subcategory of $\prod_{j \in (\mathcal{J})_0} Ej$

Categorical Network Diffusion Weighted global sections (continued)

- ► Define W-global sections to be elements $(x_v)_{v \in X_0}$ $\in \prod_{v \in X_0} F_v$ such that for every $e = (v, w)$ we have *W*-global sections to be elements $(x_v)_{v \in X_0} \in \prod_{v \in X_0} F_v$ such that for every $e = (v, w)$
	- 0
- ▶ Remark: if $W(u, v) = 1$ for all $(u, v) \in \mathbb{X}_0^2$, then which implies $F_{\rho \triangleright v}(x_v) = F_{\rho \triangleleft w}(x_w)$. $W(v, w) \le \text{hom}_{F_e}(F_{e \ge v}(x_v), F_{e \ge w}(x_w))$ $W(w, v) \le \text{hom}_{F_e}(F_{e \ge w}(x_w), F_{e \ge v}(x_v))$ $\hom_{F_e}(F_{e \geq v}(x_v), F_{e \geq w}(x_w)) = \hom_{F_e}(F_{e \geq w}(x_v), F_{e \geq v}(x_v)) = 1$ $P_{e\geq v}(x_v) = F_{e\leq w}(x_w)$

Theorem. The objects of $\Gamma^W(\mathbb{X}; \underline{F})$ are W-global sections. Furthermore,

 $\hom_{\Gamma(\mathbb{X};E)}((x_v)_{v\in X_0}, (y_v)_{v\in X_0}) = \bigwedge \hom_{F_v}(x_v, y_v)$ $v \in X_0$

Categorical Network Diffusion Tarski Laplacian

the Tarski Laplacian is the map $\mathscr{L}: \prod_{v \in X_0} F_v \to \prod_{v \in X_0} F_v$ given by $F: \mathcal{J}^{op} \to \mathcal{Q}\mathcal{C}$ $\overline{F}: \mathcal{J} \rightarrow \mathcal{Q}\mathcal{C}al$ $(\mathscr{L}\mathbf{x})_v =$

Definition. Given the data

where $\mathbf{x} = (x_v)_{v \in \mathbb{X}_0}$. Theorem. $\mathscr L$ is a functor of Q-categories. *Proof*. Need to show hom $\prod_{v \in X_0} (\mathbf{x}, \mathbf{y}) \le \text{hom}_{\prod_{v \in X_0}} (\mathcal{L}(\mathbf{x}), \mathcal{L}(\mathbf{y}))$. Use that \underline{F} and \overline{F} are Q -functors and need a lemma about weighted limits.

$$
\frac{\partial^2 at}{\partial t} \quad W : \mathbb{X}_0 \times \mathbb{X}_0 \to Q,
$$
\n
$$
\frac{\partial^2}{\partial t} F_v \to \prod_{v \in \mathbb{X}_0} F_v \text{ given by}
$$
\n
$$
W(v, -)
$$
\n
$$
\int_{v \le e \ge w} \overline{F}_{v \le e} F_{e \ge w}(x_w)
$$

$$
m_{\prod_{v\in X_0}}\big(\mathscr{L}(x),\mathscr{L}(y)\big).
$$

Interlude Analogy between adjoint linear maps and adjoint functors Suppose $\mathcal C$ and $\mathcal D$ are Q-categories. Recall, $L \dashv R$ is an adjuction when hom_{$\mathscr{D}(Lx, y) = \hom_{\mathscr{D}}(x, Ry)$ for all $x \in (\mathscr{C})_0, y \in (\mathscr{D})_0$}

Suppose V and W are R-vector spaces. Then, $L: V \rightarrow W$ has a linear adjoint when

 $\langle Lx, y \rangle = \langle x, L^*y \rangle$ for all $x \in V, y \in W$

Categorical Network Diffusion Computing Global Sections

Definition. Suppose $q \in Q$. Let $S_q(\mathscr{L})$ denote the subcategory of $\prod_{v \in X_0} F_v$ spanned by $\mathbf{x} = (x_v)_{v \in X_0}$ such that

Lemma. Suppose $F_{e^{\beta v}}$ + $\overline{F}_{v \geq e}$ for every incidence $v \leq e$ in \mathcal{J}^{op} . Then, $\vec{x} \in S_q(\mathcal{L})$ if and only if $\lim_{F_e} (F_{e \geq v}(x_v), F_{e \geq w}(x_w)) \geq q \otimes W(v, w)$ for every $e = (v, w) \in X_1$ *Proof.* We have $\mathcal{L}_{e \geq v}$ → $\overline{F}_{v \geq e}$ for every incidence $v \leq e$ in \mathcal{J}^{op} . Then, $\vec{x} \in S_q(\mathcal{L})$

$$
\hom_{\prod_{v \in X_0} F_v}(\mathbf{x}, \mathcal{L}\mathbf{x}) \ge q
$$

$$
\text{hom}_{\prod_{v \in X_0} F_v}(\vec{x}, \mathcal{L}\vec{x}) = \bigwedge_{v \in X_0} \text{hom}_{F_v}(x_v, \mathcal{L}(\vec{x})_v)
$$

 $= \bigwedge_{v \in \mathbb{X}_0} h$

 $=$ $\bigwedge_{v\in\mathbb{X}_{0}}\bigwedge$

$$
\text{hom}_{F_v}\left(x_v, \bigwedge_{v \leq e \leq w}^{W(v,-)} \overline{F}_{v \leq e} F_{e \geq w}(x_w)\right)
$$

$$
\bigwedge_{v \leq e \geq w} \left[W(v,w), \text{hom}_{F_v}\left(x_v, \overline{F}_{v \leq e} F_{e \geq w}(x_w)\right)\right]
$$

Categorical Network Diffusion Computing Global Sections

 $F_{\overline{v}}$

if and only if for all if and only if $\lim_{F_v} (F_{e \ge w}(x_v), F_{e \ge w}(x_w)) \ge q \otimes W(v, w)$ for all $e = (v, w) \in X_1$. $\left[W(v, w), \text{hom}_{F_e}(E_{e \geq v}(x_v), F)\right]$ $\left\{ \varphi_{\geq w}(x_w) \right\}$ $\geq q$ for all $e = (v, w) \in \mathbb{X}_1$

Proof (continued).

 $\text{hom}_{\prod_{v\in\mathbb{X}_{0}}}$

 $=$ $\bigwedge_{v\in\mathbb{X}_{0}}\bigwedge$

 $\geq q$

 $(\vec{x}, \mathscr{L}\vec{x}) = \bigwedge_{v \in \mathbb{X}_0}$

$$
\Lambda_{\nu \leq e \geq w} \left[W(\nu, w), \hom_{F_{\nu}}(x_{\nu}, \overline{F}_{\nu \leq e} E_{e \geq w}(x_{\nu})) \right]
$$

$$
\Lambda_{\nu \leq e \geq w} \left[W(\nu, w), \hom_{F_{e}}(F_{e \geq w}(x_{\nu}), F_{e \geq w}(x_{\nu})) \right]
$$

$$
\sum_{P \subseteq W} (x_w) \leq q
$$
 for all $e = (v, w) \in X_1$

Categorical Network Diffusion Hodge-Tarski Theorem

Theorem. Given the data

 $W: X$ suppose $F_{e \triangleright v}$ + $\overline{F}_{v \triangleright e}$ for every incidence v

Compare to the Hodge Theorem:

 $H^0_{dR}(\mathbb{M};\mathbb{R})\cong \ker \Delta_0$ Compare to the Hodge Theorem for network sheaves ($\mathscr{C} = \mathscr{H}ilb$): $\Gamma(\mathbb{X};E) \cong \ker \Delta_0$

$$
F: \mathcal{J}^{op} \to \underline{Q}\mathcal{C}at
$$

\n
$$
\overline{F}: \mathcal{J} \to \underline{Q}\mathcal{C}at
$$

\n
$$
W: \mathbb{X}_0 \times \mathbb{X}_0 \to \underline{Q}
$$

\n
$$
\text{ace } v \leq e \text{ in } \mathcal{J}^{op}. \text{ Then, } \Gamma^W(\mathbb{X}; \underline{F}) \cong S_1(\mathcal{L}).
$$

Categorical Network Diffusion Tarski Fixed Point Theorem

Theorem. Suppose $\mathscr C$ is a Q -category and $\mathscr L: \mathscr C \to \mathscr C$ is a Q -functor. Suppose $\mathscr C$ has all weighted joins. Then, for every $q \in Q$, the category $S_q(\mathcal{L})$ generated by $x \in (\mathcal{C})_0$ such that $\hom_{\mathscr{C}}(x, \mathscr{L}x) \geq q$ has all weighted meets and joins.

 $\Gamma^W(\mathbb{X}; \underline{F}) \cong S_1(\mathscr{L})$ has all weighted meets and joins.

‣ Work in progress to prove similar result for categories enriched in an arbitrary cosmos cosmos = bicomplete closed symmetric monoidal

Corollary. Suppose $F_v \in (Q\mathcal{C}at)_0$ has all weighted meets and joins for all $v \in \mathbb{X}_0$. Then,

Applications Logic, engineering, & economics

- Applications with $F_v = [\mathcal{C}^{op}, Q]$ for $\mathcal C$ a discrete Q-category $F_v = [\mathcal{C}^{op}, \mathcal{Q}]$ for $\mathcal C$ a discrete $\mathcal Q$
	- $\mathcal{Q} = \{0,1\}$, network multi-modal logic (R. & Ghrist, 2022)
	- ๏ , synchronization of max-plus linear systems (R., Zavlanos, 2023) *Q* = [−∞, ∞]
	- $Q = [0,1]$, distributed fuzzy formal concept analysis (Ghrist & Lopez, TBD)
- ‣ Other applications
	- \circ Q-valued preference relations
	-

๏ network preference dynamics (R., Ghrist, Henselman-Petrusek, Bell, Zavlanos, 2024)

Thank You Any questions?

Hans Riess Autonomous Systems Laboratory Duke University

Email: hans.riess@duke.edu X/Twitter: @hansmriess Website: hansriess.com