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Categories!
● Category theory is a good way to organize 

compositional models of systems
● Category theory is the "theory of mathematical 

analogies"
● Surprisingly, it's expressive enough to represent 

mathematical logic!
● But in a sense, that's too expressive… it's hard to get 

a handhold
● Sheaf theory is a part of category theory, and 

provides some useful constraints to simplify modeling
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Why sheaves?
Sheaves:
● Are the univeral reductionist paradigm that 

guide the composition of more complicated models 
from simpler ones

● Moderate between different levels of abstraction 
and/or domains of validity for models

And recently, they can handle noisy real-world data 
with practical models in software
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Sheaves are universal
● Theorem: (Lawvere, 1960s & 70s) Formal logic 

can be encoded in a category of sheaves
– All nontraditional logics can be encoded as well
– (this hasn't been realized in software; it's somehow too 

unwieldy...)
● Theorem: (R., 2017) Any framework that 

assembles local models into global ones 
consistently will yield sheaves

Hence,
● Any systematic reductionist approach to science 

entails the use of sheaves, at least in part
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Sheaves guide the level of abstraction
● George Box (1978), "All models are wrong but 

some are useful"
● Question: What is the domain of validity for a 

model?
– Box, again, "It is inappropriate to be concerned about 

safety from mice when there are tigers abroad."
● Claim: This is a topological notion
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What is topology?

Not this!
This is 
TopoGRAPHY!

(Thanks USGS!)
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What is topology?

=

Topology is the study of spaces 
under continuous deformations
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Topology is present in data
● Cellphone used to record signal level of 802.11 access 

points near several apartment buildings
● Signal level (dBm) and station MAC address recorded 

periodically
– Uniquely identified 52 WAPs

● Random projection to 2d

(image courtesy of Google)

Random
projection

Software credit: Daniel Muellner and Mikael Vejdemo-Johansson
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Topology is present in data
● Goal: measure environment and targets with minimal 

sensing and opportunistic sources
● Key theoretical guarantees proven
● First generation algorithms

– Simulated extensively
– Validated experimentally

(image courtesy of Google)

Random
projection

Software credit: Daniel Muellner and Mikael Vejdemo-Johansson
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There are lots of topologies...

Partial order

Undirected
hypergraph

Abstract
simplicial
complex

CW complex

Simplicial
complex

Cell complex

Stratified 
manifold

Manifold

Topological space

Δ-complexRegular CW
complex

Flag
complex

Undirected
graph

“is a”
“can be made into a”

Morse 
theory

Alexandrovtopology

Geometric

realization

To
po

log
y

Com
binatorics

Note to category theorists: 
This diagram does NOT commute!

Inclusion structure
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In practice, we only need these...

Partial order

Undirected
hypergraph

Abstract
simplicial
complex

CW complex

Simplicial
complex

Cell complex

Stratified 
manifold

Manifold

Topological space

Δ-complexRegular CW
complex

Flag
complex

Undirected
graph

“is a”
“can be made into a”

Morse 
theory

Alexandrovtopology

Geometric

realization

To
po

log
y

Com
binatorics

Note to category theorists: 
This diagram does NOT commute!

Inclusion structure

Represented by a directed acyclic graph:
Hasse diagram for the partial order
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A sheaf relates Topology → Models
● A sheaf is a data structure that:

– Pairs a domain of validity with a corresponding model, 
and 

– Explains how the model changes with the domain

We say "sheaf ON a partial order OF metric spaces"
● Formally: a sheaf is a functor from the partial order to 

the category of metric spaces & continuous maps

Graph node: cell Distance metric: stalk

Function on each graph edge: restriction
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Historical note
● The sheaf theory literature before 2015 mostly treats:

sheaves ON abstract topological spaces OF vectors

● The traditional "tool" is sheaf cohomology, an 
algebraic invariant
– Studies the models in the absence of data
– Not noise tolerant
– Computationally burdensome until very recently (software 

releases imminent, but still to come!)

Serves pure mathematicians, 
but no one else, sadly Algebraic; good for 

algorithms, but not able to 
handle noise very well
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Our discussion today
● The sheaf theory literature before 2015 mostly treats:

sheaves ON abstract topological spaces OF vectors

● Our approach:
sheaves ON a partial order OF metric spaces
– Handles both models & data, separately or together
– Provably noise tolerant
– Computationally more efficient (with caveats)

Serves pure mathematicians, 
but no one else, sadly Algebraic; good for 

algorithms, but not able to 
handle noise very well
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Learning objectives for today
Topology provides a handhold for 
diagrammatic/category-theory modeling:
● Learn to encode various problems as sheaves

– Some will have "standard" solutions; some won't
● Derive practical solutions from these sheaves

– Use PySheaf to get numerical estimates!
● Measure, localize, and interpret the extent of 

consistency within a model with respect to 
observations
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Starting point...
● A sheaf is a data structure that:

– Pairs a domain of validity with a corresponding model, 
and 

– Explains how the model changes with the domain

● An assignment is some data "within" the sheaf
● Consistency radius measures data-model fit

Let's be a little more precise about what these mean

Graph node: cell Distance metric: stalk

Function on each graph edge: restriction
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Partial order of data sets
An observation
A functional 
dependency 
between 
observations
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Topologizing a partial order

Open sets are unions
of up-sets

The domain of 
validity for the 
observation marked 
with the arrow
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Topologizing a partial order

Intersections
of up-sets are also
up-sets

Intersections are 
places where two 
models and their 
observations might 
conflict
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(   )(   )

A sheaf on a poset is...

A set assigned to 
each element, called
a stalk, and …

ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1) (  )0 1
1 0

(  )-3 3
-4 4

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

Stalks can be measure spaces!
We can handle stochastic data

2
3
1 2 -2

3 -3
1 -1
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(   )(   )

A sheaf on a poset is...
… restriction functions 
between stalks, 
following the 
order relation…

ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

(“Restriction” 
because it goes from
bigger up-sets to smaller ones)
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(   )(   )

A sheaf on a poset is...
ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1) (  )0 1
1 0

(  )-3 3
-4 4

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

(1 -1) =

(   )0 1 1
1 0 1(1 0) = (0 1) (   )1 0 1

0 1 1

(  )0 1
1 0(  )-3 3

-4 4(   )1 0 1
0 1 1

2 -2
3 -3
1 -1

=

… so that the diagram
commutes!

2
3
1

2
3
1 2 -2

3 -3
1 -1

2 -2
3 -3
1 -1
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(   )(   )

An assignment is...

… the selection of a
value on some open 
sets

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(-1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
0

-2
-3
-1
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(   )(   )

A global section is...

… an assignment
that is consistent 
with the restrictions

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(-1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
0

-2
-3
-1
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(   )(   )

Some assignments aren’t consistent

… but they might
be partially 
consistent

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(+1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
1

-2
-3
-1
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(   )(   )

Consistency radius is...
… the maximum 
(or some other norm)
distance between the 
value in a stalk and 
the values 
propagated 
along the 
restrictions

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(+1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
1

-2
-3
-1

2
3
1(   )0 1 1

1 0 1 ( )3
2- =   2

( )2
3(1 -1) - 1 = 2

(+1) - 
2
3
1

-2
-3    = 2  14
-1 MAX ≥ 2  14

Note: lots more restrictions to check!
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(   )(   )

Consistency radius is continuous
Theorem: It’s continuous 
both in the assignment 
and in the restrictions!

(Proof involves 
establishing 
some inequalities)

Use a product 
metric on stalks 
and topology of 
uniform 
convergence on restrictions

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(-1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
0

-2
-3
-1
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Consistency radius = aggregated residuals

… yes this thing!
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Linear regression… 

… yes this thing!

sheafify!

Model
coefficients

Datum #1 Datum #n… 
predictor #1

pr
ed

ict
or

 #n
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Linear regression… 

… yes this thing!

sheafify!

Model
coefficients
(m,b)

y1 yn… 
y

1  = b+m
x

1

y n
 =

 b 
+ 

m
x n
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Linear regression… 

… yes this thing!

sheafify!

Model
coefficients
(m,b)

y1 yn… 
y

1  = b+m
x

1

y n
 =

 b 
+ 

m
x n

Tip: Use spans!
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Software!
● Regression as sheaf

  
● Radio foxhunting

https://colab.research.google.com/drive/16DA4ZEJpgij1paD8eAS8S6-m5pDavntr

https://colab.research.google.com/drive/1o7N_yQy4QdcUBq48pYzUbUauFVfZVDPp

https://colab.research.google.com/drive/16DA4ZEJpgij1paD8eAS8S6-m5pDavntr
https://colab.research.google.com/drive/1o7N_yQy4QdcUBq48pYzUbUauFVfZVDPp
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Amateur radio foxhunting
Typical sensors:
● Bearing to Fox
● Fox signal strength
● GPS location

Fox A

Fox B

Sensor 1Sensor 2

Sensor 3
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Bearing sensors
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Bearing sensors… reality…
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Bearing sheaf
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Bearing sheaf (two sensors)
Fox position Sensor 2 position, BearingSensor 1 position, Bearing

Fox position, Sensor 1 position Fox position, Sensor 2 position
ℝ2×ℝ2

ℝ2×S1 ℝ2×S1

ℝ2×ℝ2

ℝ2

pr1
pr1(pr2,Mbearing)

(pr2,Mbearing)

Global sections of this sheaf 
correspond to two bearings 
whose sight lines intersect at 
the fox transmitter
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Consistency of proposed fox locations
Consistency radius minimization … 

… converges to a likely fox location

Given Given
x,y in plot at left

Inferred by minimum consistency radius
(closed form solution in this case)
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Consistency of proposed fox locations
An impossible situation...

… does not converge!

Given Given
x,y in plot at left

Inferred by minimum consistency radius
(closed form solution in this case)
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A larger sheaf from more sensors

Previous sheaf (bearing sensors)

Sensors & observations Stalks & restrictions

This larger sheaf contains bearing and signal strength sensors
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Consistency radius tracks noise level

Optimization finds 
the fox!

https://github.com/kb1dds/foxsheaf

Fo
x p

re
di

cti
on

 er
ro

r
Bearing errors only Signal strength

errors only

all cells with 
unknown values 
were randomized

https://github.com/kb1dds/foxsheaf
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Interpretation
● Sheaf: a data structure for modeling consistency
● Assignment: an instance of the data housed in a sheaf
● Consistency radius: how well do data and model 

agree?
● Consistency radius optimization: predict some missing 

or less-noisy data
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We've now seen...
● A few examples of sheaf models for a few problems 
● How do we build sheaf models in general?
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A differential equation example
● Consider u’ = f(u) on the real line
● Ck(ℝ,ℝd) is the space of k-times continuously 

differentiable functions
● The equation might be expressed diagrammatically:

C0(ℝ,ℝd)u' : 

C1(ℝ,ℝd)u :

f d/dt
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A differential equation example
● Consider u’ = f(u) on the real line
● Ck(ℝ,ℝd) is the space of k-times continuously 

differentiable functions
● The equation might be expressed diagrammatically:

C0(ℝ,ℝd)u' : 

C1(ℝ,ℝd)u :

f d/dt

But wait, diagram does not commute, so it cannot be a sheaf!
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A differential equation example
● Consider u’ = f(u) on the real line
● Ck(ℝ,ℝd) is the space of k-times continuously 

differentiable functions
● The equation might be expressed diagrammatically:

But wait, diagram does not commute, so it cannot be a sheaf!
Well, OK. It is a sheaf on the free category gen'd by the graph.
That's awkward*.    We are going to stick with posets today.

C0(ℝ,ℝd)u' : 

C1(ℝ,ℝd)u :

f d/dt

*I would need to define sieves &c, but won't b/c that is rather subtle
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A differential equation example
A standard trick: replace u’ = f(u) with the system:
● v = f(u)
● v = d/dt (u)

But wait, now the two copies of u don't have to agree...

C0(ℝ,ℝd)

d/dt

v : 

C1(ℝ,ℝd)u : C1(ℝ,ℝd)u :

f
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A differential equation example
A standard trick: replace u’ = f(u) with the system:
● v = f(u)
● v = d/dt (u)

Sections of this sheaf are solutions to the original equation,
because this requires all three copies of u to agree

C1(ℝ,ℝd)C0(ℝ,ℝd)

d/dt

u :v : 

C1(ℝ,ℝd)u : C1(ℝ,ℝd)u :

f id id
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Multi-equation sheaves
● Theorem: (R.) For every system of equations, there is 

a sheaf whose global sections are solutions
– Base poset has two levels: Equations < Variables
– Stalk over each variable is that variable’s set of possible 

values
– Stalk over an equation is a subset of the product of the 

variables involved
– Restriction maps are projections

Source: M. Robinson, “Sheaf and duality methods for analyzing multi-model systems,”
arXiv:1604.04647
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Goodwin macroeconomic model
● A simple description of a national economy:

(1)       v = Employment rate

(2)       u = Workers’ share of income

v u

Variables

Equations

Eq. (1) Eq. (2)
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● A simple description of a national economy:
(1)       v = Employment rate

(2)       u = Workers’ share of income

v u uv

Variables

Equations

Eq. (1) Eq. (2)

. .

Goodwin macroeconomic model



 Michael Robinson

● A simple description of a national economy:
(1)       v = Employment rate

(2)       u = Workers’ share of income

v u uv

Variables

Equations

Eq. (1) Eq. (2)Eq. (3) Eq. (4)

. .

v = dv/dt
u = du/dt

.

. (3)
(4)

Goodwin macroeconomic model
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● A simple description of a national economy:
(1)       v = Employment rate

(2)       u = Workers’ share of income

Variables

Equations

v = dv/dt
u = du/dt

.

. (3)
(4)

C1(ℝ,ℝ) C1(ℝ,ℝ2) C1(ℝ,ℝ2) C1(ℝ,ℝ)

C0(ℝ,ℝ) C1(ℝ,ℝ) C1(ℝ,ℝ) C0(ℝ,ℝ)

pr2 pr1

pr2

pr1id id

d/dtd/dt (1)
(2)

Goodwin macroeconomic model
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Also equation systems: Logic circuits
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Logic circuits

0
0

0

1

1
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Logic circuits

1
1

0

0

0
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Logic circuits
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Sheafify… via spans!

B

B

B

BB2

B2 B

B = {0,1}, ie. Boolean values
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Sheafify… via spans!

B

B

B

BB2

B2 B

pr1

pr2

pr2

NOT ∘ pr2

AND

OR
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Software!
● Logic circuits

https://colab.research.google.com/drive/1S_c3rQ88JDTTdtBP8VYu5Y7aP7w0F41T

https://colab.research.google.com/drive/1S_c3rQ88JDTTdtBP8VYu5Y7aP7w0F41T
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Bayesian networks (aka "Bayes nets")

Season Temperature Clothing
P(Temp | Season) P(Clothing | Temp)
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Bayesian networks (aka "Bayes nets")

Season Temperature Clothing
P(Temp | Season) P(Clothing | Temp)

CategoricalNumericCategorical
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Causal networks

Season Temperature Clothing
P(Temp | Season) P(Clothing | Temp)

do(Temp = 20 °C)

Let's see what happens when we turn on the A/C;
we don't care about the season any more...
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Let's try to write some equations...

Season Temperature Clothing
P(Temp | Season) P(Clothing | Temp)

Definition: P(A | B) P(B) = P(A,B)

P(Temp,Season) = P(Temp | Season) P(Season)
P(Clothing,Temp) = P(Clothing | Temp) P(Temp)
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Let's try to write some equations...

Season Temperature Clothing
P(Temp | Season) P(Clothing | Temp)

Definition: P(A | B) P(B) = P(A,B)

P(Temp,Season) = P(Temp | Season) P(Season)
P(Clothing,Temp) = P(Clothing | Temp) P(Temp)

… it seems that we don't have enough equations to fully solve for 
P(Clothing), say…

… what we're missing are the equations that marginalize out variables 
from a joint distribution.  There are quite a few of these!
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But wait, there's more...

Season Temperature Clothing
P(Temp | Season) P(Clothing | Temp)

Since there are three variable in play, there are many ways to 
marginalize all the various joints, including those "not in" the Bayes net

P(Temp,Season) = P(Temp | Season) P(Season)
P(Clothing,Temp) = P(Clothing | Temp) P(Temp)
P(Season) = Σt P(Temp = t, Season)
P(Temp) = Σs P(Temp, Season = s)
P(Temp) = Σc P(Clothing = c, Temp)
P(Clothing) = Σt P(Clothing, Temp = t)
P(Season) = Σc P(Clothing = c, Season)
P(Clothing) = Σs P(Clothing, Season = s)



 Michael Robinson

But wait, there's even more...

Season Temperature Clothing
P(Temp | Season) P(Clothing | Temp)

We forgot the three-way marginals too!  (But this is now everything)

P(Temp,Season) = P(Temp | Season) P(Season)
P(Clothing,Temp) = P(Clothing | Temp) P(Temp)
P(Season) = Σt P(Temp = t, Season)
P(Temp) = Σs P(Temp, Season = s)
P(Temp) = Σc P(Clothing = c, Temp)
P(Clothing) = Σt P(Clothing, Temp = t)
P(Season) = Σc P(Clothing = c, Season)
P(Clothing) = Σs P(Clothing, Season = s)
P(Season,Temp) = Σc P(Clothing = c, Temp, Season)
P(Season,Clothing) = Σt P(Clothing, Temp = t, Season)
P(Temp,Clothing) = Σs P(Clothing, Temp, Season = s)
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We'd like to sheafify...

X1 X2 X3

P(X2 | X1) P(X3 | X2)

… but things are getting very busy; let's summarize the names

P(X1,X2) = P(X2 | X1) P(X1)
P(X2,X3) = P(X3 | X2) P(X2)
P(X1) = Σt P(X2 = t, X1)
P(X2) = Σs P(X2, X1 = s)
P(X2) = Σc P(X3 = c, X2)
P(X3) = Σt P(X3, X2 = t)
P(X1) = Σc P(X3 = c, X1)
P(X3) = Σs P(X3, X1 = s)
P(X1,X2) = Σc P(X3 = c, X2, X1)
P(X1,X3) = Σt P(X3, X2 = t, X1)
P(X2,X3) = Σs P(X3, X2, X1 = s)

9 Marginal equations

2 conditional equations
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What are the stalks & restrictions?
Each "variable" in our system of equations is a probability distribution

Definition: M(X1,X2,X3) is the set of joint probability distributions on 
X1,X2,X3. (Similar for more/fewer variables)

P(X1) = Σt P(X2 = t, X1)
P(X2) = Σs P(X2, X1 = s)
P(X2) = Σc P(X3 = c, X2)
P(X3) = Σt P(X3, X2 = t)
P(X1) = Σc P(X3 = c, X1)
P(X3) = Σs P(X3, X1 = s)

M(X1) → M(X1,X2)
M(X2) → M(X2,X3)
M(X1,X2) → M(X1)
M(X1,X2) → M(X2)
M(X2,X3) → M(X2)
M(X2,X3) → M(X3)
M(X1,X3) → M(X1)
M(X1,X3) → M(X3)
M(X1,X2,X3) → M(X1,X2)
M(X1,X2,X3) → M(X1,X3)
M(X1,X2,X3) → M(X2,X3)

Equations: Restriction types:

P(X1,X2) = Σc P(X3 = c, X2, X1)
P(X1,X3) = Σt P(X3, X2 = t, X1)
P(X2,X3) = Σs P(X3, X2, X1 = s)

P(X1,X2) = P(X2 | X1) P(X1)
P(X2,X3) = P(X3 | X2) P(X2)
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Bayesian network as a sheaf
● Marginals…  (Always present)

M
(X

1,X
2)

M
(X

1,X
2)

M
(X

1,X
3)

M
(X

1,X
3)

M
(X

2,X
3)

M
(X

2,X
3)

M
(X

1,X
2,X

3)
M

(X
1,X

2,X
3)

M
(X

1,X
2,X

3)

M
(X

1,X
2)

M
(X

1,X
3)

M
(X

2,X
3)

M
(X

1)
M

(X
2)

M
(X

3)
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Bayesian network as a sheaf
● … conditionals … (based upon the Bayes net)

P(X2|X1)

M
(X

1)

X1 → X2 → X3

Bayes net

P(X3|X2)

M
(X

2)
M

(X
1,X

2)
M

(X
1,X

2)
M

(X
1,X

3)
M

(X
1,X

3)
M

(X
2,X

3)
M

(X
2,X

3)
M

(X
1,X

2,X
3)

M
(X

1,X
2,X

3)
M

(X
1,X

2,X
3)

M
(X

1,X
2)

M
(X

1,X
3)

M
(X

2,X
3)

M
(X

1)
M

(X
2)

M
(X

3)
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Bayesian network as a sheaf
● … identities!  (Added to ensure consistency across copies.)
● Corollary: Global sections are possible sets of distributions 

that satisfy the Bayes net rules

P(X2|X1)

M
(X

1)

X1 → X2 → X3

Bayes net

P(X3|X2)

M
(X

2)
M

(X
1,X

2)
M

(X
1,X

2)
M

(X
1,X

3)
M

(X
1,X

3)
M

(X
2,X

3)
M

(X
2,X

3)
M

(X
1,X

2,X
3)

M
(X

1,X
2,X

3)
M

(X
1,X

2,X
3)

M
(X

1,X
2)

M
(X

1,X
3)

M
(X

2,X
3)

M
(X

1,X
2,X

3)

M
(X

1)
M

(X
2)

M
(X

3)
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● Make an assignment to variable in top row with P(desired value) = 1
● Delete the conditional arrows (leave the marginals) into that variable
● Minimize consistency radius elsewhere

P(X2|X1)

M
(X

1)

P(X3|X2)

M
(X

2)
M

(X
1,X

2)
M

(X
1,X

2)
M

(X
1,X

3)
M

(X
1,X

3)
M

(X
2,X

3)
M

(X
2,X

3)
M

(X
1,X

2,X
3)

M
(X

1,X
2,X

3)
M

(X
1,X

2,X
3)

M
(X

1,X
2)

M
(X

1,X
3)

M
(X

2,X
3)

M
(X

1,X
2,X

3)

M
(X

1)
M

(X
2)

M
(X

3)

Causal modeling using do operator

do(X2  =...)

X1 → X2 → X3

Bayes net



 

 

Michael Robinson

Consistency: Discretizing correctly



 Michael Robinson

Discretization of functions
Ck(X,Y) ℝn

f (f(x1),…,f(xn))



 Michael Robinson

Discretization of functions
Ck(X,Y) ℝnℝm

(a1,…,am) f =      ai fi(x)Σ
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Why discretize?
Ck(X,Y) ℝnℝm

Ck - p(X,Y)

differential 
operator
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Why discretize?
Ck(X,Y) ℝnℝm

Ck - p(X,Y) ℝnℝm

differential 
operator
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Why discretize?
Ck(X,Y) ℝnℝm

Ck - p(X,Y) ℝnℝm

finite 
difference
approx

finite 
element
approx

differential 
operator

Goals:
1. Make the diagram commute as m, n → ∞

(consistency of the approximation)
2. Recover properties of the differential operator from 

the approximations (convergence of the approximation)
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Back to our original example
● Consider u’ = f(u) on the real line
● This has a sheaf diagram

u’
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Finite differences
● Discretizing each function space via a fixed step h

(Δh u)n = u(nh) 

Continuous sheaf model Discretized sheaf model
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Is it a sheaf morphism?
● A sheaf morphism is a commutative diagram of 

maps between stalks of two sheaves… is this one? 
(dotted arrows)

Continuous sheaf model Discretized sheaf model
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Is it a sheaf morphism?
● This square commutes if we pick f correctly...

Continuous sheaf model Discretized sheaf model

~
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Is it a sheaf morphism?
● … this one commutes trivially … 

Continuous sheaf model Discretized sheaf model
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Is it a sheaf morphism?
● … this one also commutes trivially … 

Continuous sheaf model Discretized sheaf model
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Is it a sheaf morphism?
● ...but this asks that u’ (nh) = Dhun, which means 

discretized version is exactly correct. Oops!

Continuous sheaf model Discretized sheaf model
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Finite elements
● We can also try to construct a finite elements 

approximation… from the “other side”
● Again start with the same continuous sheaf model
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Finite elements sheaf model
● Use an N dimensional subspace of functions with a 

linear embedding
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Is it a sheaf morphism?
● Although the derivative approximation can now be 

corrected by a judicious choice of embedding b… 
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Might be a sheaf morphism...
● …if not linear, now the equation itself fails
● …if linear, we may get a morphism; Galerkin 

method.
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Observations about consistency
Ck(X,Y) ℝnℝm

Ck - p(X,Y) ℝnℝm

approx sheaf 
morphism

approx sheaf
morphism

sheaf sheafsheaf

finite 
difference
approx

finite 
element
approx

Encoding

differential 
operator

C S D
defect in 
approximating 
derivatives

defect in 
approximating 
the equation

If linear, can be exact!
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In summary...
Sheaves capture variable relationships in any system 
of equations; that's most scientific models!
● Differential equation systems
● Bayes & causal nets
● … basically anything described by equations

Consistency radius estimates:
● Measurement error,
● Data modeling error, and
● Discretization error
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We've now seen...
● Building of several sheaf models
● Inferring/imputing missing or noisy data using the 

sheaf
● But what of the domain of validity?

Reference: https://doi.org/10.32408/compositionality-2-2

https://doi.org/10.32408/compositionality-2-2
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What's the right domain of validity?
● How many variables do you really need?
● Concrete example: counting stars in a star cluster

NGC 869 & 884 (Wikipedia)

Variables for P stars: IP/SP

"Symmetric group on P elements" = ignore order

I = Position and brightness
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(   )(   )

The space of global sections
It’s a closed subset of the 
product of the stalks 
over the minimal 
elements

ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1) (  )0 1
1 0

(  )-3 3
-4 4

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

Global sections ⊆ ℝ2×ℝ3 ⊆ ℝ17

Thm: (R.) Consistency 
radius sets a lower 
bound on the distance 
to the nearest 
global section

Data fusion selects the
nearest global section

2
3
1 2 -2

3 -3
1 -1
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(   )(   )

Consistency radius is monotonic
Proposition: 
If U ⊆ V then 
c(U) ≤ c(V)

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(+1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
1

-2
-3
-1

Note: lots more restrictions to check!

Consistency
Radius =  0

Consistency
radius restricted to
an open set U
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(   )(   )

Consistency radius is monotonic
Proposition: 
If U ⊆ V then 
c(U) ≤ c(V)

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(+1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
1

-2
-3
-1

Note: lots more restrictions to check!

Consistency
Radius = 2 14 

Consistency
radius restricted to
an open set U
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Consistency radius optimization

ℝ ℝ

ℝ

ℝ(2)

(1)

(1)

(1)

(½)

This is a sheaf on a small poset

NB: restrictions act 
by multiplication
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Consistency radius optimization

0 1

?

?(2)

(1)

(1)

(1)

(½)

Here is an assignment supported on part of it
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Consistency radius optimization

0 1

?(2)

(1)

(1)

(1)

(½)
½

Minimizing the consistency radius when extending globally
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Consistency radius optimization

⅓

?(2)

(1)

(1)

(1)

(½)
⅓

Here is the closest global section (everything can be changed)

⅔
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Extending to a larger sheaf...

ℝ ℝ

ℝ

ℝ(2)

(1)

(1)

(1)

(½)

This is the full sheaf diagram including all open sets in the
Alexandrov topology, not just the base
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Extending to a larger sheaf...

0 1

?

?(2)

(1)

(1)

(1)

(½)
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Extending to a larger sheaf…

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

Minimizing the consistency radius when extending
The value on the intersection is no longer unique!

This value can be anything between ⅓ and ⅔
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Extending to a larger sheaf...

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

c(U) = ½
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Extending to a larger sheaf...

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

c(U) = ½ c(V) = ½
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Extending to a larger sheaf...

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

c(U) = ½ c(V) = ½

c(U ∩ V) = 0
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Consistency radius is not a measure

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

c(U) = ½ c(V) = ½

c(U ∩ V) = 0

c(U ∪ V) = ⅔  < c(U) + c(V) – c(U ∩ V) = 1
Proposition: 
“Local consistency of a Global assignment” is a (loose) upper 
bound for “Global consistency of a Local assignment”
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Software!
● Computing local 

consistency radius

https://colab.research.google.com/drive/1hscWfilQFls_fOBSo3YtpVMQ-Tz2UNWn

https://colab.research.google.com/drive/1hscWfilQFls_fOBSo3YtpVMQ-Tz2UNWn
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The consistency filtration

1

⅓

(1)

(1)

Consistency
threshold 0 ½ ⅔

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

Consistency radius = ⅔

● … assigns the set of open sets (open cover) with consistency 
less than a given threshold

● Lemma: consistency filtration is itself a sheaf of collections 
of open sets on (ℝ,≤).  Restrictions in this sheaf are cover 
coarsenings.

refine refine



 Michael Robinson

Consistency filtration is natural

1

⅓

(1)

(1)

0 ½ ⅔

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

Consistency radius = ⅔

● Theorem: Consistency filtration is continuous under the an 
interleaving distance

● Theorem: Consistency filtration is also functorial
● (Note: the proof is quite intricate...)

Consistency
threshold 

refine refine
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A small perturbation … 
● Perturbations allowed in both assignment and 

sheaf (subject to it staying a sheaf!)

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 0.9

0.6

0.3(2)

(1)

(0.8)

(0.8)

(0.4)
Max difference = 0.2
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A small perturbation … 
● Compute consistency filtrations… they're similar

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 ½ ⅔
Consistency
threshold 

{C}

{A,C}

{B,C}
{A,B,C}

0 0.9

0.6

0.3(2)

(1)

(0.8)

(0.8)

(0.4)

0 0.6 0.66
Consistency
threshold 

{C}

{A,C}

{B,C}
{A,B,C}

0.3

Max difference = 0.2
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A sheaf assignment morphism is ...
● … first, an order preserving map between base 

posets...

A B

C

E

D

F
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A sheaf assignment morphism is ...
● … which is a continuous map … 

(preimages shown below)

{E,F}

{D,E,F}

{F}

{A,C} {B,C}

{C}

{A,B,C}



 Michael Robinson

A sheaf assignment morphism is ...
● … add to this, a commuting set of component 

maps for the two sheaves … 

ℝ ℝ

ℝ

ℝ(2)

(1)

(1)

(1)

(½)
ℝ

ℝ

ℝ
(½)

(2)

(1)

(1)

(1)
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A sheaf assignment morphism is ...
● … such that the assignments on both ends are 

preserved.

0 1

½

⅓(2)

(1)

(1)

(1)

(½)
0

⅓

½
(½)

(2)

(1)

(1)

(1)
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Functoriality!
● Compute consistency filtrations, and all that’s really 

needed is to align the open sets in the covers!

0 1

½

⅓(2)

(1)

(1)

(1)

(½)
0

⅓

½
(½)

(2)

(1)

(1)

(1)

0 ½ ⅔
Consistency
threshold 

{C}

{A,C}

{B,C}
{A,B,C}

0 ½ ⅔
Consistency
threshold 

{F} {E,F} {D,E,F}
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Interpretation
● Sheaf: a data structure for modeling consistency
● Assignment: an instance of the data housed in a sheaf
● Consistency radius: how well do data and model 

agree?
● Consistency radius optimization: predict some missing 

or cleaner data
● Consistency filtration: where do data and model agree?
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