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The motivating question

Question

What is the internal language of a diagram of toposes, geometric
morphisms, and transformations?
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The traditional internal language

The traditional Mitchell–Bénabou internal language of a topos is a
higher-order logic:

Syntax Interpretation in topos

Type A Object A

Product type A× B Cartesian product A× B

Function type A → B Exponential object BA

Term f (x , g(y)) : C in context
x : A, y : D

Composite morphism
A× D

1×g−−→ A× B
f−→ C

Proposition φ(x , y) in context
x : A, y : B

Subobject φ↣ A× B

Conjunction φ ∧ ψ Pullback φ×A×B ψ

Implication φ⇒ ψ Heyting operation φ⇒ ψ



Towards dependent type theory

HOL is sufficient to encode nearly all set-based mathematics, but it
is sometimes awkward.

Example

In HOL we can only define a category with a single type of arrows:
• two types C0 and C1 with s, t : C1 ⇒ C0, etc.

But in mathematics we often prefer many types of arrows:
• a type C0 and a family of types homC (x , y) for x , y : C0, etc.

This requires using a dependent type theory a la Martin-Löf instead.

(Dependent type theory also seems to be necessary to formulate usable
internal languages for higher toposes.)



The dependently typed internal language

In dependent type theory, instead of just propositions depending on
a context, we have arbitrary types depending on a context.

Syntax Interpretation in topos

Type C (x , y) in context
x : A, y : B

Object C of E/(A× B)

Type C (x , y) in context
x : A, y : B(x)

Object C of E/B ,
where B ∈ E/A

Dependent function type
(x : A) → B(x)

ΠAB ∈ E , where A∗ ⊣ ΠA.

Equality type x = y ,
for x , y : A

Diagonal ∆A : A → A× A,
as object of E/(A× A)

The propositions over A are those types B over A such that
Π(B×AB)∆B , syntactically (x : A)(y : B(x))(z : B(x)) → (y = z).



Universes

In HOL, propositions (in some context) are equivalent to terms
(in that context) belonging to the subobject classifier Ω.

In dependent type theory, types in some context can be classified by
terms in that context belonging to a universe type U .

• For Russellian paradox reasons, we can’t have all types
belonging to one universe.

• Requires the topos to have universe objects.
(All Grothendieck and realizability toposes do.)

• Can perfectly well have dependent types without any universes.
I have no more to say about universes today.



Interpreting dependent type theory in a topos

The interpretation function from syntax to a topos is defined by
induction. But for dependent type theory it is more complicated:

• Substitution into types corresponds to pullback:
If f : A → B, and C (y) is a type in context y : B, then
C (f (x)) in context x : A represents the pullback f ∗(C ).

• However, substitution in syntax is strictly functorial, while
pullback is only pseudofunctorial.



Coherence theorems

We use an intermediate structure:

Definition

A comprehension category is:
• A category E (whose objects are “contexts”)
• A pseudofunctor T : Eop → Cat (objects of T (Γ) are “types”)
• A universal way to extend Γ ∈ E by A ∈ T (Γ) to a new

context Γ�A ∈ E .

A topos defines a comprehension category with T (Γ) = E/Γ and
functorial action by pullback. Then we use a coherence theorem to
make the pseudofunctor strict.

• Seely, “Locally cartesian closed categories and type theory”, 1984
• Hofmann, “On the interpretation of type theory in locally cartesian closed

categories”, 1995
• Lumsdaine–Warren, “The local universes model: an overlooked coherence

construction for dependent type theories”, 2015
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Diagrams of toposes

Suppose given a diagram of toposes and geometric morphisms:
a (pseudo)functor E : M → Topos, where M is some 2-category.

Example (an S-topos)

A pair of toposes E ,S and a single geometric morphism E → S.

Example (a local S-topos)

A geometric morphism f : E → S with a left adjoint c : S → E
whose unit fc → 1 is an isomorphism. (Then f ∗ ⊣ f∗ = c∗ ⊣ c∗.)

Example (a totally connected S-topos)

A geometric morphism f : E → S with a right adjoint d : S → E
whose counit 1 → fd is an isomorphism. (Then d∗ ⊣ d∗ = f ∗ ⊣ f∗.)

Is there an internal language for diagrams?



Modal logic

Traditional modal logic introduces new unary propositional
operations called modalities:

□φ = “φ is necessary” ♢φ = “φ is possible”

Theorem (Awodey–Birkedal 2001)

Given a local geometric morphism f : E → S with left adjoint
c : S → E , we can interpret traditional modal logic:

Types Objects of S

Propositions in context x : A Subobjects of f ∗A in E

□ and ♢ f ∗f∗ and c∗f∗ = c∗c
∗

• □ = topological interior, or relative discrete coreflection.
• ♢ = topological closure, or relative indiscrete reflection.



Towards modal type theories

However, we may want to reason about objects of E as well,
and the actions of f and c on arbitrary objects.

A modal dependent type theory has modalities that act on types
rather than propositions.

Say we let types represent objects of E . So we should have:
• A discrete coreflection □ acting on types, and
• An indiscrete reflection ♢ acting on types.

Central question

If B is a type in context x : A, what is the context of □B?



Contexts in modal type theory

Central question

If B is a type in context x : A, what is the context of □B?

The naïve answer is x ′ : □A. But this is technically problematic:
1 If B(x) depends on x : A, then □(B(x)) no longer uses x , but

some new variable x ′ : □A. How do we write it?
2 If f : C → □A, substituting f (y) for x ′ in □B yields

something that can’t be obtained directly as □ of anything.
3 For implementing a type-theory-based proof assistant,

the typechecker wants to ask a different question anyway!

Better question

For □B to be a type in context x : A, in what context does B have
to be a type?
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Spatial type theory

We allow contexts to contain two kinds of variables:
• x : A is an ordinary variable of type A.
• x :: A is a “crisp” variable, semantically the same as x : □A.

If Γ is such a context, Γ/□ denotes only its crisp variables.
Now we can answer the typechecker:

For □B to be a type in context Γ,
it suffices for B to be a type in context Γ/□.

Example

If Γ = (x :: A, y : C ), categorically Γ = □A× C , so

Γ/□ = (x :: A) = □A.

Then if B ∈ E/□A, we have □B ∈ E/□□A ≃ E/□A, which can be
pulled back to E/(□A× C ).
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Spatial type theory II

Dually, Γ/♢ denotes Γ with all variables made crisp.

For ♢B to be a type in context Γ,
it suffices for B to be a type in context Γ/♢.

Example

If Γ = (x :: A, y : C ) = □A× C , then

Γ/♢ = (x :: A, y :: C ) = □(A× C ).

If B ∈ E/□(A× C ), we have ♢B ∈ E/♢□(A× C ) ≃ E/♢(A× C ),
which can be pulled back to E/(□A× C ).

This gives an internal language for a local geometric morphism.
• Pfenning–Davies, “A judgmental reconstruction of modal logic”, 2001
• Licata-S., “Adjoint logic with a 2-category of modes”, 2016
• S., “Brouwer’s fixed-point theorem in real-cohesive homotopy type theory”, 2018
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Multimodal type theory

For a local geometric morphism, S is “included” in E , so it makes
sense to focus the type theory on E with its induced endofunctors.

For a general diagram M → Topos, we need a separate mode of
types for each object p ∈ M (hence each topos Ep).

• Each mode has its type theory, an internal language for Ep.
• Each µ : p → q in M gives a modality □µ that makes p-types

into q-types.

For □µB to be a q-type in q-context Γ,
it suffices for B to be a p-type in p-context Γ/µ.

But what is Γ/µ?

For that matter, what is a context?



Inductively generated contexts

In ordinary Martin-Löf dependent type theory, the contexts are
inductively generated by:

• There is an empty context.
• If Γ is a context, A is a type in context Γ, and x is a fresh

variable, then Γ, (x : A) is a context.

In MTT (Gratzer–Kavvos–Nuyts–Birkedal 2021) for diagrams on a
2-category M, the contexts are inductively generated by:

• There is an empty context at each mode p.
• If µ : p → q and Γ is a q-context, then Γ/µ is a p-context.
• If µ : p → q, while Γ is a q-context, A is a p-type in context Γ/µ,

and x is a fresh variable, then Γ, (x :µ A) is a q-context.

x :µ A generalizes crisp variables; semantically it means x : □µA.



Variables

(This is the most syntactically technical slide — feel free to zone out.)

In spatial type theory, /□ and /♢ are operations on contexts.
In MTT, /µ is an inductive constructor of contexts.

The “meaning” of /µ is defined by the rule for using variables:

If Γ, (x :µ A),Θ is a context, and ν is the composite
of all the divisions in Θ, we can use the variable x

whenever we have a 2-cell α : µ⇒ ν in M.

This explains why /µ can’t be an operation on contexts in general:
we have to keep µ around so later (in a further extended context)
we can choose 2-cells correctly. If there is a unique choice of µ in
all cases, or even a universal one (a “left lifting”), we can make that
choice right away; but in general this isn’t possible.



Modalities versus divisions

tl;dr

In MTT, each µ : p → q in M induces both:
• An operation □µ from p-types to q-types, and
• An operation /µ from q-contexts to p-contexts,

and we can’t get rid of the second one.

How are these related? The rule for terms of □µA is similar:

To have box(b) : □µB in q-context Γ,
it suffices to have b : B in p-context Γ/µ.

Roughly, this means that /µ is left adjoint to □µ:

Γ/µ ⊢p b : B

Γ ⊢q box(b) : □µB



Interpreting MTT

Theorem (GKNB)

We can interpret MTT over M in any diagram E : M → Cat where
each category Ep is a topos and each functor Eµ has a left adjoint.

Corollary

If M = L[L∗] is a 2-category L with a left adjoint freely adjoined
for every morphism, we can interpret MTT over M in any diagram
E : L → Topos where each geometric morphism Eµ is essential.

Proof of Corollary.

Since each geometric morphism is an adjunction, E : L → Topos
induces E : M = L[L∗] → Cat.
Each direct image µ∗ has a left adjoint µ∗ to be /µ∗ , while
essentiality gives a further left adjoint µ! to be /µ∗ .
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Avoiding essentiality

What can we do if our geometric morphisms are not essential?
The key ideas are:

1 The left adjoint /µ only needs to be defined so as to act on
the contexts, not the types; whereas

2 The “important part” of the internal language, which tells us
something about toposes, involves the types, not the contexts.

Recall that when making a topos into a comprehension category,
we used the topos E itself as the contexts, with T (Γ) = E/Γ.

This leaves us some unused freedom: we can alter the category of
contexts as long as we “don’t change” the categories of types.



Presheaves as contexts for sheaves

Let j be a topology on a topos E , with subcategory of sheaves
Ej ⊆ E and sheafification functor Lj : E → Ej .

Definition

A morphism p : B → A in E is a relative sheaf if the following
square is a pullback:

B LjB

A LjA

p Ljp

If Tj(A) ⊆ E/A denotes the category of relative sheaves, we have
an equivalence of categories Tj(A) ≃ Ej/LjA.

Thus, (E , Tj) is a comprehension category “equivalent” to Ej .



Presenting geometric morphisms by essential ones

Let f : E → S be a geometric morphism, and suppose we have sites

E = Sh(D, k) and S = Sh(C, j)

and a cover-reflecting∗ functor ℓ : D → C (same direction!) that
induces f as

f∗ = Ranℓ

f ∗ =
(
Sh(C, j) ↪→ Psh(C) ℓ∗−→ Psh(D) Lk−→ Sh(D, k)

)
.

Then f is “presented” by an essential geometric morphism between
presheaf categories:

Lanℓ ⊣ ℓ∗ ⊣ Ranℓ

Psh(D) Psh(C)

∗ also known as “covering lifting” or a “comorphism of sites”.



Finding cover-reflecting functors, part 0

Given f : E → S, our goal now is to find sites for E and S such
that f is presented by a cover-reflecting functor.

• In Moerdijk, “Continuous fibrations and inverse limits of
toposes” (1986) this is achieved by considering E as an
S-topos presented by an internal site in S and then
“externalizing” that internal site relative to some site for S.

• We will use a more explicit comma-category construction,
which appears in Caramello, “Denseness conditions, morphisms
and equivalences of toposes” (2020), and generalizes better.



Finding cover-reflecting functors, part 1

Given f : E → S, in the usual way we can find subcanonical sites
with finite limits

E = Sh(B, i) and S = Sh(C, j)

such that f ∗(C) ⊆ B. Write f † = f ∗|C : C → B (opposite direction!)

Define D = (B ↓ f †), with objects (B ∈ B,C ∈ C, ϕ : B → f †C ).
1 The forgetful functor u : D → B has a fully faithful right

adjoint v(B) = (B, 1, !).
2 Thus, u∗ : Psh(B) → Psh(D) is a fully faithful left adjoint.
3 u∗ also has a left adjoint Lanu, which is left exact since u is.
4 So Psh(B), hence also Sh(B, i), is a subtopos of Psh(D).
5 So there is a topology k on D such that E = Sh(D, k).



Finding cover-reflecting functors, part 2

Recall f † = f ∗|C : C → B and D = (B ↓ f †).

Define g : C → D by g(C ) = (f †(C ),C , 1f †(C)). Then:

6 g is left exact and u ◦ g = f † : C → B.
7 Since the topology k on D is created by u, and f † is

cover-preserving, g is also cover-preserving.
8 As u induces an equivalence on sheaf categories, g induces the

same geometric morphism as f † on sheaf categories, namely f .
9 g has a left adjoint ℓ : D → C defined by ℓ(B,C , ϕ) = C ,

which is therefore cover-reflecting and also induces f .
So we can present any geometric morphism by an essential one
between presheaf categories, and thus interpret MTT over 2[2∗] in
any single geometric morphism.
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Presenting diagrams

Now, given any diagram E : L → Topos, we want to do the same
thing for all the geometric morphisms in its image, simultaneously,
in order to interpret MTT over M = L[L∗].

That is, we want to find sites of definition for all the toposes in its
image, with respect to which all the geometric morphisms in its
image are presented by cover-reflecting functors.

The basic idea is that comma categories generalize to oplax limits.



Step 1: A diagram of sites

Assumption

E : L → Topos is a pseudofunctor, where L is a finite 2-category.

Write µ∗ ⊣ µ∗ for the geometric morphism induced by µ ∈ L(p, q).

Step 1

Find subcanonical sites with finite limits, Ep = Sh(Cp, jp),
such that for each µ : p → q, we have µ∗(Cq) ⊆ Cp.

(E.g. find generators Bp ⊆ Ep and let Cp be the closure of⋃
µ:p→q µ

∗(Bq) under finite limits.)

We get a pseudofunctor C : Lop → Lex, where Lex is the
2-category of categories with finite limits and left exact functors.

Write µ† = µ∗|Cq : Cq → Cp for the functor induced by µ ∈ L(p, q).



Step 2: Oplax limits

Fix p ∈ L, and let p�L denote its lax slice 2-category:
• Its objects are pairs (q, µ) where q ∈ L and µ : p → q.
• Its morphisms (q, µ) → (r , ν) are pair (ϱ, α) where
ϱ : q → r and α : ν ⇒ ϱ ◦ µ.

• Its 2-cells (ϱ, α) ⇒ (σ, β) are 2-cells γ : ϱ⇒ σ such that

p

q ⇓ γ r

⇓ α =

p

q r

⇓ β

There is a 2-functor πp : p�L → L with πp((q, µ)) = q.



Step 2: Oplax limits

Let Dp be the oplax limit of (p�L)op πp−→ Lop C−→ Lex.

Thus an object of Dp consists of:
• For each µ : p → q, an object Γµ ∈ Cq.
• For each α : ν ⇒ ϱ ◦ µ, a morphism Γµ → ϱ†(Γν).
• Functoriality and compatibility axioms for 2-cells.

Example

If L = 2 = {p ν−→ q}, then:
• p�L = L and Dp = (Cp ↓ ν†). Its objects have Γ1p ∈ Cp and

Γν ∈ Cq, with Γ1p → ν†(Γν) from
p

p q.

1p ν
=

ν

• q�L = 1 and Dq = Cq.
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Step 3: Topologies

Recall an object of Dp consists of an object Γµ ∈ Cq for each
µ : p → q, plus morphisms and axioms.

1 There is a forgetful functor up : Dp → Cp with up(Γ) = Γ1p .
2 up has a right adjoint vp defined by

vp(A)
µ:p→q = lim

σ:q→p
β:1p⇒σ◦µ

σ†(A)

(Defining the morphisms uses that ν† preserves this finite limit.)

3 vp is fully faithful, since

up(vp(A)) = vp(A)
1p = lim

σ:p→p
β:1p⇒σ

σ†(A) ∼= 1p†(A) ∼= A

4 Therefore, just as before, there is a topology kp on Dp such
that Sh(Dp, kp) = Sh(Cp, jp) = Ep.



Step 4: Morphisms of sites

5 For µ : p → q, define ℓµ : Dp → Dq by ℓµ(Γ)ν:q→r = Γν◦µ.
6 ℓµ has a right adjoint gµ : Dq → Dp defined with finite limits,

and the following square commutes (up to isomorphism):

Dp Cp

Dq Cq

up

gµ

uq

µ†

7 Now as before:
• Since the topology kp on Dp is created by up, and
µ† : Cq → Cp is cover-preserving, gµ is also cover-preserving.

• Since up and uq induce equivalences on sheaf categories,
gµ induces the same geometric morphism as µ† : Cq → Cp,
namely (µ∗ ⊣ µ∗) : Ep → Eq.

• Since ℓµ ⊣ gµ, the functor ℓµ is cover-reflecting and also
induces (µ∗ ⊣ µ∗).



Conclusion

Theorem

For any finite 2-category L, we can present any E : L → Topos by
a diagram of sites and cover-reflecting functors, hence by a diagram
of presheaf categories and essential geometric morphisms.

Corollary

We can interpret MTT over M = L[L∗] in any such E .



Open questions

• What if L is infinite? This method only works if each inverse
image functor in the diagram preserves L-sized limits.

• E.g. an idempotent monad or comonad is a finite diagram,
but a non-idempotent one is not.

• What about higher toposes? This method works for diagrams
of ∞-toposes that are 1-localic, i.e. ∞-sheaves on a 1-site.



Thank you!

Thank you!

https://arxiv.org/abs/2303.02572

https://arxiv.org/abs/2303.02572
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