A groupoidal characterisation of theories via topos theory

Joshua Wrigley • Queen Mary University of London

Toposes in Mondovì

On topological groupoids that represent theories, arXiv:2306.16331 Topoi with enough points and topological groupoids, arXiv:2408.15848

Theorem (Ahlbrandt-Ziegler [AZ86])

- Let $\mathbb{T}_1,\mathbb{T}_2$ be countably categorical theories.
 - ▷ A theory is countably categorical if any pair of countable models are isomorphic.

Theorem (Ahlbrandt-Ziegler [AZ86])

- Let $\mathbb{T}_1,\mathbb{T}_2$ be countably categorical theories.
- Let $M \vDash \mathbb{T}_1$ and $N \vDash \mathbb{T}_2$ be the unique countable models.
- There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N),$

- if and only if \mathbb{T}_1 and \mathbb{T}_2 are *bi-interpretable*.
 - A structure is interpretable in another if it can be obtained as a definable quotient of definable subsets.

Theorem (Ahlbrandt-Ziegler [AZ86])

- Let $\mathbb{T}_1,\mathbb{T}_2$ be countably categorical theories.
- Let $M \vDash \mathbb{T}_1$ and $N \vDash \mathbb{T}_2$ be the unique countable models.

There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N)$,

if and only if \mathbb{T}_1 and \mathbb{T}_2 are *bi-interpretable*.

This has facilitated applications to model theory from

- combinatorial group theory,
- group cohomology,

. . .

(see the survey article of MacPherson [Ma11]).

Theorem (Ahlbrandt-Ziegler [AZ86])

Let $\mathbb{T}_1,\mathbb{T}_2$ be countably categorical theories.

Let $M \vDash \mathbb{T}_1$ and $N \vDash \mathbb{T}_2$ be the unique countable models.

There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N),$

if and only if \mathbb{T}_1 and \mathbb{T}_2 are *bi-interpretable*.

How can we generalise this result?

 If *M* and *N* are *arbitrary models*, we must relax the *homeomorphism* condition.

Theorem (Ahlbrandt-Ziegler [AZ86])

Let $\mathbb{T}_1,\mathbb{T}_2$ be countably categorical theories.

Let $M \vDash \mathbb{T}_1$ and $N \vDash \mathbb{T}_2$ be the unique countable models.

There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N),$

if and only if \mathbb{T}_1 and \mathbb{T}_2 are *bi-interpretable*.

How can we generalise this result?

- If *M* and *N* are *arbitrary models*, we must relax the *homeomorphism* condition.
- If $\mathbb{T}_1,\mathbb{T}_2$ are not countably categorical, we cannot only use topological groups.

Theorem (Ahlbrandt-Ziegler [AZ86])

Let $\mathbb{T}_1,\mathbb{T}_2$ be countably categorical theories.

Let $M \vDash \mathbb{T}_1$ and $N \vDash \mathbb{T}_2$ be the unique countable models.

There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N)$,

if and only if \mathbb{T}_1 and \mathbb{T}_2 are *bi-interpretable*.

How can we generalise this result?

- If *M* and *N* are *arbitrary models*, we must relax the *homeomorphism* condition.
- If $\mathbb{T}_1, \mathbb{T}_2$ are not countably categorical, we cannot only use topological groups.

This is an area of active research:

Theorem (Ben Yaacov [BY22])

For any pair of classical theories $\mathbb{T}_1, \mathbb{T}_2$, there are topological groupoids $G(\mathbb{T}_1)$ and $G(\mathbb{T}_2)$ such that there is a homeomorphism

 $\textbf{G}(\mathbb{T}_1)\cong \textbf{G}(\mathbb{T}_2)$

if and only if \mathbb{T}_1 and \mathbb{T}_2 are *bi-interpretable*.

Theorem (Ahlbrandt-Ziegler [AZ86])

Let $\mathbb{T}_1,\mathbb{T}_2$ be countably categorical theories.

Let $M \vDash \mathbb{T}_1$ and $N \vDash \mathbb{T}_2$ be the unique countable models.

There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N)$,

if and only if \mathbb{T}_1 and \mathbb{T}_2 are *bi-interpretable*.

How can we generalise this result?

- If *M* and *N* are *arbitrary models*, we must relax the *homeomorphism* condition.
- If $\mathbb{T}_1,\mathbb{T}_2$ are not countably categorical, we cannot only use topological groups.

This is an area of active research:

Theorem (Ben Yaacov [BY22])

For any pair of classical theories $\mathbb{T}_1, \mathbb{T}_2$, there are topological groupoids $G(\mathbb{T}_1)$ and $G(\mathbb{T}_2)$ such that there is a homeomorphism

 $\textbf{G}(\mathbb{T}_1)\cong \textbf{G}(\mathbb{T}_2)$

if and only if \mathbb{T}_1 and \mathbb{T}_2 are *bi-interpretable*.

But the groupoid $G(\mathbb{T})$ is not groupoid of models for \mathbb{T} .

How would a topos-theorist generalise the Ahlbrandt-Ziegler result?

How would a topos-theorist generalise the Ahlbrandt-Ziegler result?

Every theory can be associated to its *classifying topos*

 $\mathbb{T}\mapsto \mathcal{E}_{\mathbb{T}}.$

Every topological groupoid can be associated to its *topos of sheaves*

 $\mathbb{X} \mapsto \mathsf{Sh}(\mathbb{X}).$

How would a topos-theorist generalise the Ahlbrandt-Ziegler result?

Every theory can be associated to its *classifying topos*

Definition

A topological groupoid \mathbb{X} represents a theory \mathbb{T} if $Sh(\mathbb{X}) \simeq \mathcal{E}_{\mathbb{T}}$.

 $\mathbb{T}\mapsto \mathcal{E}_{\mathbb{T}}.$

Every topological groupoid can be associated to its *topos of sheaves*

 $\mathbb{X} \mapsto \mathsf{Sh}(\mathbb{X}).$

How would a topos-theorist generalise the Ahlbrandt-Ziegler result?

Every theory can be associated to its *classifying topos*

 $\mathbb{T}\mapsto \mathcal{E}_{\mathbb{T}}.$

Every topological groupoid can be associated to its *topos of sheaves*

 $\mathbb{X} \mapsto \mathsf{Sh}(\mathbb{X}).$

Definition

A topological groupoid \mathbb{X} represents a theory \mathbb{T} if $Sh(\mathbb{X}) \simeq \mathcal{E}_{\mathbb{T}}$.

Theorem template

Let $\mathbb{T}_1,\mathbb{T}_2$ be theories with representing groupoids $\mathbb{X},\mathbb{Y}.$

Then $\mathbb{T}_1, \mathbb{T}_2$ are *Morita equivalent* if and only if \mathbb{X}, \mathbb{Y} are *Morita equivalent*.

- $\triangleright \ \ \mathsf{Theories} \ \ \mathbb{T}_1, \mathbb{T}_2 \ \mathsf{are} \ \ \mathsf{Morita} \ \mathsf{equivalent} \ \mathsf{if} \ \ \mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2},$
- \triangleright Groupoids \mathbb{X}, \mathbb{Y} are Morita equivalent if $\mathsf{Sh}(\mathbb{X}) \simeq \mathsf{Sh}(\mathbb{Y})$.

Every theory can be associated to its *classifying topos*

Definition

A topological groupoid \mathbb{X} represents a theory \mathbb{T} if $Sh(\mathbb{X}) \simeq \mathcal{E}_{\mathbb{T}}$.

 $\mathbb{T}\mapsto \mathcal{E}_{\mathbb{T}}.$

Theorem template

Every topological groupoid can be Let $\mathbb{T}_1, \mathbb{T}_2$ be theories with representing groupoids \mathbb{X}, \mathbb{Y} . associated to its *topos of sheaves* $\mathbb{X} \mapsto \mathbf{Sh}(\mathbb{X})$. Then $\mathbb{T}_1, \mathbb{T}_2$ are *Morita equivalent* if and only if \mathbb{X}, \mathbb{Y} are *Morita equivalent*.

Every theory can be associated to its *classifying topos*

Definition

A topological groupoid \mathbb{X} represents a theory \mathbb{T} if $Sh(\mathbb{X}) \simeq \mathcal{E}_{\mathbb{T}}$.

 $\mathbb{T}\mapsto \mathcal{E}_{\mathbb{T}}.$

Theorem template

Every topological groupoid can be Let $\mathbb{T}_1, \mathbb{T}_2$ be theories with representing groupoids \mathbb{X}, \mathbb{Y} . associated to its *topos of sheaves* $\mathbb{X} \mapsto \mathbf{Sh}(\mathbb{X})$. Then $\mathbb{T}_1, \mathbb{T}_2$ are *Morita equivalent* if and only if \mathbb{X}, \mathbb{Y} are *Morita equivalent*.

 $\begin{array}{c} \mathbb{T}_1, \mathbb{T}_2 \text{ are } \\ \text{bi-interpretable} \end{array} \longleftrightarrow \begin{array}{c} \mathbb{T}_1, \mathbb{T}_2 \text{ are Morita} \\ \text{equivalent,} \\ \text{see McEldowney [Mc20].} \end{array}$

Every theory can be associated to its *classifying topos*

Definition

A topological groupoid \mathbb{X} represents a theory \mathbb{T} if $Sh(\mathbb{X}) \simeq \mathcal{E}_{\mathbb{T}}$.

 $\mathbb{T}\mapsto \mathcal{E}_{\mathbb{T}}.$

Theorem template

Every topological groupoid can be Let $\mathbb{T}_1, \mathbb{T}_2$ be theories with representing groupoids \mathbb{X}, \mathbb{Y} . associated to its *topos of sheaves* $\mathbb{X} \mapsto \mathbf{Sh}(\mathbb{X})$. Then $\mathbb{T}_1, \mathbb{T}_2$ are *Morita equivalent* if and only if \mathbb{X}, \mathbb{Y} are *Morita equivalent*.

① Under classical assumptions,

 $\begin{array}{c} \mathbb{T}_1, \mathbb{T}_2 \text{ are } \\ \text{bi-interpretable} \end{array} \longleftrightarrow \begin{array}{c} \mathbb{T}_1, \mathbb{T}_2 \text{ are Morita} \\ \text{equivalent,} \\ \text{see McEldowney [Mc20].} \end{array}$

② A classification of the open representing groupoids is provided in [Wr23].

Every theory can be associated to its *classifying topos*

Definition

A topological groupoid \mathbb{X} represents a theory \mathbb{T} if $Sh(\mathbb{X}) \simeq \mathcal{E}_{\mathbb{T}}$.

 $\mathbb{T}\mapsto \mathcal{E}_{\mathbb{T}}.$

Theorem template

Every topological groupoid can be Let $\mathbb{T}_1, \mathbb{T}_2$ be theories with representing groupoids \mathbb{X}, \mathbb{Y} . associated to its *topos of sheaves* $\mathbb{X} \mapsto \mathbf{Sh}(\mathbb{X})$. Then $\mathbb{T}_1, \mathbb{T}_2$ are *Morita equivalent* if and only if \mathbb{X}, \mathbb{Y} are *Morita equivalent*.

1 Under classical assumptions,

 $\begin{array}{c} \mathbb{T}_1, \mathbb{T}_2 \text{ are } \\ \text{bi-interpretable} \end{array} & \stackrel{\mathbb{T}_1, \mathbb{T}_2 \text{ are Morita}}{\text{equivalent,}} \\ \text{see McEldowney [Mc20].} \end{array}$

- ② A classification of the open representing groupoids is provided in [Wr23].
- 3 This is the subject of today's presentation.

Main result

Two logical groupoids X, Y have equivalent sheaf topoi if and only if there exist embeddings

 $\mathbb{X}\subseteq\mathbb{W}\supseteq\mathbb{Y}$

that are weak equivalences.

 $\begin{array}{l} \mbox{Main result} \\ \mbox{Two logical groupoids } \mathbb{X}, \mathbb{Y} \mbox{ have} \\ \mbox{equivalent sheaf topoi if and only} \\ \mbox{if there exist embeddings} \end{array}$

$$\mathbb{X}\subseteq\mathbb{W}\supseteq\mathbb{Y}$$

that are *weak equivalences*.

- I. We recall the construction of the *topos of sheaves* on a topological groupoid.
- II. We define the class of *logical groupoids*.
- III. We identify the class of *weak equivalences*.

Topological groupoids

Definition

A topological groupoid $\mathbb{X} = (X_1 \rightrightarrows X_0)$ consists of a groupoid

$$X_1 \times_{X_0} X_1 \xrightarrow{m} X_1 \xleftarrow{t}{e} X_0,$$
$$\bigcup_{i} \xrightarrow{t}{i} X_0,$$

where X_0 and X_1 are endowed with topologies making all the above maps continuous.

If s (equivalently, t) is open, we say X is an open topological groupoid.

Given a groupoid \mathbb{X} , a discrete bundle on \mathbb{X} consists of a map $q: Y \to X_0$,

Given a groupoid \mathbb{X} , a discrete bundle on \mathbb{X} consists of a map $q: Y \to X_0$, equipped with an X_1 -action $\beta: X_1 \times_{X_0} Y \to Y$,

Given a groupoid \mathbb{X} , a discrete bundle on \mathbb{X} consists of a map $q: Y \to X_0$, equipped with an X_1 -action $\beta: X_1 \times_{X_0} Y \to Y$,

If $\mathbb X$ is endowed with topologies, we say that a bundle is a sheaf if

(i) $q: Y \to X_0$ is a local homeomorphism,

(ii) and $\beta \colon X_1 \times_{X_0} Y \to X_1$ is continuous.

Given a groupoid \mathbb{X} , a discrete bundle on \mathbb{X} consists of a map $q: Y \to X_0$, equipped with an X_1 -action $\beta: X_1 \times_{X_0} Y \to Y$,

If $\mathbb X$ is endowed with topologies, we say that a bundle is a sheaf if

(i) $q \colon Y \to X_0$ is a local homeomorphism,

(ii) and $\beta \colon X_1 \times_{X_0} Y \to X_1$ is continuous.

A morphism of sheaves

$$f: (Y, q, \beta) \rightarrow (Y', q', \beta')$$

is a continuous map $f\colon Y \to Y'$ such that

$$q' \circ f = q$$
 and $\alpha \cdot f(y) = f(\alpha \cdot y)$.

Given a groupoid \mathbb{X} , a discrete bundle on \mathbb{X} consists of a map $q: Y \to X_0$, equipped with an X_1 -action $\beta: X_1 \times_{X_0} Y \to Y$,

If $\mathbb X$ is endowed with topologies, we say that a bundle is a sheaf if

(i) $q \colon Y \to X_0$ is a local homeomorphism,

(ii) and $\beta \colon X_1 \times_{X_0} Y \to X_1$ is continuous.

A morphism of sheaves

 $f:(Y,q,\beta)\to(Y',q',\beta')$

is a continuous map $f\colon Y o Y'$ such that

$$q' \circ f = q$$
 and $\alpha \cdot f(y) = f(\alpha \cdot y)$.

Definition

The category of sheaves and their morphisms define a topos $\mathbf{Sh}(\mathbb{X})$.

Given a groupoid \mathbb{X} , a discrete bundle on \mathbb{X} consists of a map $q: Y \to X_0$, equipped with an X_1 -action $\beta: X_1 \times_{X_0} Y \to Y$,

If $\mathbb X$ is endowed with topologies, we say that a bundle is a sheaf if

(i) $q \colon Y \to X_0$ is a local homeomorphism,

(ii) and $\beta \colon X_1 \times_{X_0} Y \to X_1$ is continuous.

A morphism of sheaves

 $f: (Y, q, \beta) \rightarrow (Y', q', \beta')$

is a continuous map $f\colon Y o Y'$ such that

$$q' \circ f = q$$
 and $\alpha \cdot f(y) = f(\alpha \cdot y)$.

Definition

The category of sheaves and their morphisms define a topos $\mathbf{Sh}(\mathbb{X})$.

Example

A topological group G is a topological groupoid.

Its sheaves is the topos $\mathbf{B}G$ of continuous actions by G on discrete sets.

Proposition

For a T_0 topological group G, the following are equivalent.

(i) The open subgroups are a basis of open neighbourhoods of the identity.

Proposition

For a T_0 topological group G, the following are equivalent.

- (i) The open subgroups are a basis of open neighbourhoods of the identity.
- (ii) The topology τ on G is the coarsest topology determined by the topos **B**G –

i.e. if σ is another topology on G for which $\mathbf{B}G^{\sigma}$ is canonically equivalent to $\mathbf{B}G^{\tau}$, then

 $\tau\subseteq \sigma.$

Proposition

For a T_0 topological group G, the following are equivalent.

- (i) The open subgroups are a basis of open neighbourhoods of the identity.
- (ii) The topology τ on G is the coarsest topology determined by the topos **B**G –

i.e. if σ is another topology on G for which $\mathbf{B}G^{\sigma}$ is canonically equivalent to $\mathbf{B}G^{\tau}$, then

 $\tau \subseteq \sigma.$

(iii) There exists a set X such that $G \subseteq \Omega(X)$.

Here, $\Omega(X)$ is endowed with the *point-wise convergence* topology, generated by the subsets

$$\{\alpha \in \Omega(X) \mid \alpha(x) = y\}$$

for $x, y \in X$.

Proposition

For a T_0 topological group G, the following are equivalent.

- (i) The open subgroups are a basis of open neighbourhoods of the identity.
- (ii) The topology τ on G is the coarsest topology determined by the topos $\mathbf{B}G$ –

i.e. if σ is another topology on G for which $\mathbf{B}G^{\sigma}$ is canonically equivalent to $\mathbf{B}G^{\tau}$, then

 $\tau \subseteq \sigma.$

(iii) There exists a set X such that $G \subseteq \Omega(X)$.

Here, $\Omega(X)$ is endowed with the *point-wise convergence* topology, generated by the subsets

$$\{ \alpha \in \Omega(X) \mid \alpha(x) = y \}$$

for $x, y \in X$.

Definition

We say that a topological groupoid

$$\mathbb{X} = (X_1 \rightrightarrows X_0)$$

- is *logical* if
 - $-~\ensuremath{\mathbb{X}}$ is an open topological groupoid,
 - both X_0 and X_1 are T_0 spaces,
 - and the topology on X_1 is the coarsest topology determined by $\mathbf{Sh}(\mathbb{X})$.

Let $\mathbb X$ be a topological groupoid, and let $\mathbb Y, \mathbb U\subseteq \mathbb X$ be subgroupoids.

Each arrow $\alpha \in X_1$ comes with a left \mathbb{Y} -action and a right \mathbb{U} -action:

$$(\beta, \alpha) \mapsto \beta \circ \alpha, \ (\alpha, \gamma) \mapsto \alpha \circ \gamma,$$

where $\beta \in Y_1$ and $\gamma \in U_1$.

Let $\mathbb X$ be a topological groupoid, and let $\mathbb Y, \mathbb U\subseteq \mathbb X$ be subgroupoids.

Each arrow $\alpha \in X_1$ comes with a left \mathbb{Y} -action and a right \mathbb{U} -action:

$$(\beta, \alpha) \mapsto \beta \circ \alpha, \ (\alpha, \gamma) \mapsto \alpha \circ \gamma,$$

where $\beta \in Y_1$ and $\gamma \in U_1$.

The *bi-orbit* for these actions is the set

 $\mathbf{Y}[\alpha]_{\mathbb{U}} = \{ \beta \circ \alpha \circ \gamma \mid \beta \in Y_1, \gamma \in U_1 \}.$

The *space of bi-orbits* can be endowed with the quotient topology via the map:

$$X_1 \twoheadrightarrow {}_{\mathbb{Y}}[X_1]_{\mathbb{U}}$$

Let $\mathbb X$ be a topological groupoid, and let $\mathbb Y, \mathbb U\subseteq \mathbb X$ be subgroupoids.

Each arrow $\alpha \in X_1$ comes with a left \mathbb{Y} -action and a right \mathbb{U} -action:

$$(\beta, \alpha) \mapsto \beta \circ \alpha, \ (\alpha, \gamma) \mapsto \alpha \circ \gamma,$$

where $\beta \in Y_1$ and $\gamma \in U_1$.

The *bi-orbit* for these actions is the set

$$\mathbb{Y}[\alpha]_{\mathbb{U}} = \{ \beta \circ \alpha \circ \gamma \mid \beta \in Y_1, \gamma \in U_1 \}.$$

The *space of bi-orbits* can be endowed with the quotient topology via the map:

$$X_1 \twoheadrightarrow {}_{\mathbb{Y}}[X_1]_{\mathbb{U}}$$

Theorem (W.)

Let $\mathbb X$ be a logical groupoid and let $\mathbb Y\subseteq \mathbb X$ be a subgroupoid.

The inclusion $\mathbb{Y}\subseteq\mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X},$ the map

$$\mathbb{Y}[s^{-1}(U) \cap t^{-1}(Y_0)]_{\mathbb{U}} \to \mathbb{X}[s^{-1}(U_0)]_{\mathbb{U}}$$
$$\mathbb{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbb{X}[\alpha]_{\mathbb{U}}$$

is a quasi-homeomorphism.

Let $\mathbb X$ be a topological groupoid, and let $\mathbb Y, \mathbb U\subseteq \mathbb X$ be subgroupoids.

Each arrow $\alpha \in X_1$ comes with a left \mathbb{Y} -action and a right \mathbb{U} -action:

$$(\beta, \alpha) \mapsto \beta \circ \alpha, \ (\alpha, \gamma) \mapsto \alpha \circ \gamma,$$

where $\beta \in Y_1$ and $\gamma \in U_1$.

The *bi-orbit* for these actions is the set

$$\mathbb{Y}[\alpha]_{\mathbb{U}} = \{ \beta \circ \alpha \circ \gamma \mid \beta \in Y_1, \gamma \in U_1 \}.$$

The *space of bi-orbits* can be endowed with the quotient topology via the map:

$$X_1 \twoheadrightarrow _{\mathbb{Y}} [X_1]_{\mathbb{U}}$$

Theorem (W.)

Let $\mathbb X$ be a logical groupoid and let $\mathbb Y\subseteq \mathbb X$ be a subgroupoid.

The inclusion $\mathbb{Y}\subseteq\mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X},$ the map

$$\mathbb{Y}[s^{-1}(U) \cap t^{-1}(Y_0)]_{\mathbb{U}} \to \mathbb{X}[s^{-1}(U_0)]_{\mathbb{U}}$$
$$\mathbb{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbb{X}[\alpha]_{\mathbb{U}}$$

is a quasi-homeomorphism.

 $\triangleright_{\mathbb{Y}}[s^{-1}(U) \cap t^{-1}(Y_0)]_{\mathbb{U}} \subseteq_{\mathbb{Y}}[X_1]_{\mathbb{U}} \text{ is the subspace of bi-orbits}$

 $\mathbb{Y}[x \xrightarrow{\alpha} y]_{\mathbb{U}}$ where $x \in U_0$ and $y \in Y_0$.

Let $\mathbb X$ be a topological groupoid, and let $\mathbb Y, \mathbb U\subseteq \mathbb X$ be subgroupoids.

Each arrow $\alpha \in X_1$ comes with a left \mathbb{Y} -action and a right \mathbb{U} -action:

$$(\beta, \alpha) \mapsto \beta \circ \alpha, \ (\alpha, \gamma) \mapsto \alpha \circ \gamma,$$

where $\beta \in Y_1$ and $\gamma \in U_1$.

The *bi-orbit* for these actions is the set

$$\mathbb{Y}[\alpha]_{\mathbb{U}} = \{ \beta \circ \alpha \circ \gamma \mid \beta \in Y_1, \gamma \in U_1 \}.$$

The *space of bi-orbits* can be endowed with the quotient topology via the map:

$$X_1 \twoheadrightarrow _{\mathbb{Y}} [X_1]_{\mathbb{U}}.$$

Theorem (W.)

Let $\mathbb X$ be a logical groupoid and let $\mathbb Y\subseteq \mathbb X$ be a subgroupoid.

The inclusion $\mathbb{Y}\subseteq\mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X},$ the map

$$\mathbb{Y}[s^{-1}(U) \cap t^{-1}(Y_0)]_{\mathbb{U}} \to \mathbb{X}[s^{-1}(U_0)]_{\mathbb{U}}$$
$$\mathbb{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbb{X}[\alpha]_{\mathbb{U}}$$

is a quasi-homeomorphism.

 $\triangleright_{\mathbb{X}}[s^{-1}(U)]_{\mathbb{U}} \subseteq_{\mathbb{X}}[X_1]_{\mathbb{U}}$ is the subspace of bi-orbits

$$\mathbb{X}[x \xrightarrow{\alpha} y]_{\mathbb{U}}$$

where $x \in U_0$.

Let $\mathbb X$ be a topological groupoid, and let $\mathbb Y, \mathbb U\subseteq \mathbb X$ be subgroupoids.

Each arrow $\alpha \in X_1$ comes with a left \mathbb{Y} -action and a right \mathbb{U} -action:

$$(\beta, \alpha) \mapsto \beta \circ \alpha, \ (\alpha, \gamma) \mapsto \alpha \circ \gamma,$$

where $\beta \in Y_1$ and $\gamma \in U_1$.

The *bi-orbit* for these actions is the set

$$\mathbb{Y}[\alpha]_{\mathbb{U}} = \{ \beta \circ \alpha \circ \gamma \mid \beta \in Y_1, \gamma \in U_1 \}.$$

The *space of bi-orbits* can be endowed with the quotient topology via the map:

$$X_1 \twoheadrightarrow {}_{\mathbb{Y}}[X_1]_{\mathbb{U}}$$

Theorem (W.)

Let $\mathbb X$ be a logical groupoid and let $\mathbb Y\subseteq \mathbb X$ be a subgroupoid.

The inclusion $\mathbb{Y}\subseteq\mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X},$ the map

$$\mathbb{Y}[s^{-1}(U) \cap t^{-1}(Y_0)]_{\mathbb{U}} \to \mathbb{X}[s^{-1}(U_0)]_{\mathbb{U}}$$

 $\mathbb{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbb{X}[\alpha]_{\mathbb{U}}$

is a quasi-homeomorphism.

A continuous map is a *quasi-homeomorphism* if the inverse image map is a bijection on open subsets.

Let $\mathbb X$ be a topological groupoid, and let $\mathbb Y, \mathbb U\subseteq \mathbb X$ be subgroupoids.

Each arrow $\alpha \in X_1$ comes with a left \mathbb{Y} -action and a right \mathbb{U} -action:

$$(\beta, \alpha) \mapsto \beta \circ \alpha, \ (\alpha, \gamma) \mapsto \alpha \circ \gamma,$$

where $\beta \in Y_1$ and $\gamma \in U_1$.

The *bi-orbit* for these actions is the set

$$\mathbb{Y}[\alpha]_{\mathbb{U}} = \{ \beta \circ \alpha \circ \gamma \mid \beta \in Y_1, \gamma \in U_1 \}.$$

The *space of bi-orbits* can be endowed with the quotient topology via the map:

$$X_1 \twoheadrightarrow \mathbb{Y}[X_1]_{\mathbb{U}}.$$

Theorem (W.)

Let $\mathbb X$ be a logical groupoid and let $\mathbb Y\subseteq \mathbb X$ be a subgroupoid.

The inclusion $\mathbb{Y}\subseteq\mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X},$ the map

$$\mathbb{Y}[s^{-1}(U) \cap t^{-1}(Y_0)]_{\mathbb{U}} \to \mathbb{X}[s^{-1}(U_0)]_{\mathbb{U}}$$

 $\mathbb{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbb{X}[\alpha]_{\mathbb{U}}$

is a quasi-homeomorphism.

Definition

A subgroupoid inclusion $\mathbb{Y} \subseteq \mathbb{X}$ satisfying the theorem is said to be a *weak equivalence*.

Theorem (W.)

Let $\mathbb X$ be a logical groupoid and let $\mathbb Y\subseteq \mathbb X$ be a subgroupoid.

The inclusion $\mathbb{Y}\subseteq\mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X},$ the map

$$\mathbb{Y}[s^{-1}(U) \cap t^{-1}(Y_0)]_{\mathbb{U}} \to \mathbb{X}[s^{-1}(U_0)]_{\mathbb{U}}$$
$$\mathbb{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbb{X}[\alpha]_{\mathbb{U}}$$

is a quasi-homeomorphism.

Definition

A subgroupoid inclusion $\mathbb{Y}\subseteq\mathbb{X}$ satisfying the theorem is said to be a weak equivalence.

Proposition

If G is a logical group, the inclusion of a subgroup $H \subseteq G$ is a weak equivalence if and only if H is a *dense* subset of G.

Theorem (W.)

Let $\mathbb X$ be a logical groupoid and let $\mathbb Y\subseteq \mathbb X$ be a subgroupoid.

The inclusion $\mathbb{Y}\subseteq\mathbb{X}$ yields an equivalence

 $\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X},$ the map

 ${}_{\mathbb{Y}}[s^{-1}(U)\cap t^{-1}(Y_0)]_{\mathbb{U}} o {}_{\mathbb{X}}[s^{-1}(U_0)]_{\mathbb{U}}$ ${}_{\mathbb{Y}}[\alpha]_{\mathbb{U}} \mapsto {}_{\mathbb{X}}[\alpha]_{\mathbb{U}}$

is a quasi-homeomorphism.

Definition

A subgroupoid inclusion $\mathbb{Y} \subseteq \mathbb{X}$ satisfying the theorem is said to be a *weak equivalence*.

Proposition

If G is a logical group, the inclusion of a subgroup $H \subseteq G$ is a weak equivalence if and only if H is a *dense* subset of G.

Corollary (W.)

Two logical groupoids \mathbb{X}, \mathbb{Y} are Morita equivalent if and only if there exist embeddings

$$\mathbb{Y}\subseteq\mathbb{W}\supseteq\mathbb{X}$$

that are weak equivalences.

Theorem (W.)

Let $\mathbb X$ be a logical groupoid and let $\mathbb Y\subseteq \mathbb X$ be a subgroupoid.

The inclusion $\mathbb{Y}\subseteq\mathbb{X}$ yields an equivalence

 $\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X},$ the map

 $\mathbb{Y}[s^{-1}(U) \cap t^{-1}(Y_0)]_{\mathbb{U}} \to \mathbb{X}[s^{-1}(U_0)]_{\mathbb{U}}$ $\mathbb{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbb{X}[\alpha]_{\mathbb{U}}$

is a quasi-homeomorphism.

Definition

A subgroupoid inclusion $\mathbb{Y} \subseteq \mathbb{X}$ satisfying the theorem is said to be a *weak equivalence*.

Proposition

If G is a logical group, the inclusion of a subgroup $H \subseteq G$ is a weak equivalence if and only if H is a *dense* subset of G.

Corollary (W.)

Let $\mathbb{T}_1,\mathbb{T}_2$ be theories with representing groupoids of models $\mathbb{X},\mathbb{Y}.$

Then $\mathbb{T}_1,\mathbb{T}_2$ are Morita equivalent if and only if there exist embeddings

 $\mathbb{X}\subseteq\mathbb{W}\supseteq\mathbb{Y}$

that are weak equivalences.

References

- [AZ86] Ahlbrandt G., Ziegler M. Quasi finitely axiomatizable totally categorical theories. Ann. Pure Appl. Logic 30 (1986), no. 1, 63–82.
- [BY22] Ben Yaacov I. Reconstruction of non-ℵ₀-categorical theories. J. Symb. Logic 87 (2022), no. 1, 159–187.
- [Mc20] McEldowney P.A. On Morita equivalence and interpretability. *Rev. Symb. Logic* 13 (2020), no. 2, 388-415.
- [Ma11] MacPherson D. A survey of homogeneous structures. *Discrete Math.* 311 (2011), no. 15, 1599–1634.
- [Wr23] Wrigley J.L. On topological groupoids that represent theories. (2023) arXiv:2306.16331.
- [Wr24] Wrigley J.L. Topoi with enough points and topological groupoids. (2024) arXiv:2408.15848.

[AF13] Awodey S., Forssell H. First-order logical duality. Ann. Pure Appl.

Further Reading

- logical duality. *Ann. Pure Appl. Logic* 164 (2013), no. 3, 319–348.
- [Ca16] Caramello O. Topological Galois theory. *Adv. Math.* 291 (2016), 646–695.
- [BM98] Butz C., Moerdijk I. Representing topoi by topological groupoids. J. Pure Appl. Algebra 130 (1998), no. 3, 223–235.
- [JT84] Joyal A., Tierney M. An extension of the Galois theory of Grothendieck. *Mem. Amer. Math. Soc.* 51 (1984), no. 309.

Thank you for listening