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Background

Theorem (Ahlbrandt-Ziegler [AZ86])
Let T1,T2 be countably categorical theories.

▷ A theory is countably categorical if any pair of
countable models are isomorphic.

Let M ⊨ T1 and N ⊨ T2 be the unique countable
models.
There is a homeomorphism of topological groups

Aut(M) ∼= Aut(N),

if and only if T1 and T2 are bi-interpretable.
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This has facilitated applications to model
theory from
− combinatorial group theory,
− group cohomology,

. . .

(see the survey article of MacPherson [Ma11]).
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There is a homeomorphism of topological groups

Aut(M) ∼= Aut(N),

if and only if T1 and T2 are bi-interpretable.

How can we generalise this result?
− If M and N are arbitrary models, we must

relax the homeomorphism condition.

− If T1,T2 are not countably categorical, we
cannot only use topological groups.

This is an area of active research:

Theorem (Ben Yaacov [BY22])
For any pair of classical theories T1,T2, there
are topological groupoids G(T1) and G(T2)
such that there is a homeomorphism

G(T1) ∼= G(T2)

if and only if T1 and T2 are bi-interpretable.

But the groupoid G(T) is not groupoid of
models for T.
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A topos-theoretic approach
How would a topos-theorist generalise the Ahlbrandt-Ziegler result?

Every theory can be associated to
its classifying topos

T 7→ ET.

Every topological groupoid can be
associated to its topos of sheaves

X 7→ Sh(X).

Definition
A topological groupoid X represents a theory T if Sh(X) ' ET.

Theorem template
Let T1,T2 be theories with representing groupoids X,Y.
Then T1,T2 are Morita equivalent if and only if X,Y are
Morita equivalent.

This can be visualised as a ‘bridge’:
When does

ET1 ' Sh(X),
ET2 ' Sh(Y)?

When are T1,T2
Morita equivalent?

When are X,Y
Morita equivalent?

1© Under classical assumptions,
T1,T2 are

bi-interpretable ⇐⇒ T1,T2 are Morita
equivalent,

see McEldowney [Mc20].

2© A classification of the open representing
groupoids is provided in [Wr23].

3© This is the subject of today’s presentation.
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Main result and overview

Main result
Two logical groupoids X,Y have
equivalent sheaf topoi if and only
if there exist embeddings

X ⊆ W ⊇ Y

that are weak equivalences.

I. We recall the construction of the topos of
sheaves on a topological groupoid.

II. We define the class of logical groupoids.
III. We identify the class of weak equivalences.
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Topological groupoids

Definition
A topological groupoid X = (X1 ⇒ X0) consists of a groupoid

X1 ×X0 X1 X1 X0,
m

i

t

s
e

where X0 and X1 are endowed with topologies making all the above maps continuous.

If s (equivalently, t) is open, we say X is an open topological groupoid.



Equivariant sheaves on a groupoid
Given a groupoid X, a discrete
bundle on X consists of a map
q : Y → X0,

M M ′ . . . N
X0.

. . .

a

a′

...

a′′

b

...

b′

c

...

c ′

If X is endowed with topologies, we say that a
bundle is a sheaf if
(i) q : Y → X0 is a local homeomorphism,
(ii) and β : X1 ×X0 Y → X1 is continuous.

A morphism of sheaves
f : (Y , q, β) → (Y ′, q′, β′)

is a continuous map f : Y → Y ′ such that
q′ ◦ f = q and α · f (y) = f (α · y).

Definition
The category of sheaves and their morphisms define
a topos Sh(X).

Example
A topological group G is a topological groupoid.
Its sheaves is the topos BG of continuous actions
by G on discrete sets.
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Logical groupoids
Proposition
For a T0 topological group G , the following are
equivalent.
(i) The open subgroups are a basis of open

neighbourhoods of the identity.

(ii) The topology τ on G is the coarsest topol-
ogy determined by the topos BG –
i.e. if σ is another topology on G for which
BGσ is canonically equivalent to BGτ , then

τ ⊆ σ.
(iii) There exists a set X such that G ⊆ Ω(X ).

Here, Ω(X ) is endowed with the point-
wise convergence topology, generated by
the subsets

{α ∈ Ω(X ) | α(x) = y }
for x , y ∈ X .

Definition
We say that a topological groupoid

X = (X1 ⇒ X0)

is logical if
− X is an open topological groupoid,
− both X0 and X1 are T0 spaces,
− and the topology on X1 is the coarsest

topology determined by Sh(X).
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Weak equivalences

Let X be a topological groupoid, and let
Y,U ⊆ X be subgroupoids.
Each arrow α ∈ X1 comes with a left
Y-action and a right U-action:

(β, α) 7→ β ◦ α, (α, γ) 7→ α ◦ γ,

where β ∈ Y1 and γ ∈ U1.

The bi-orbit for these actions is the set

Y[α]U = {β ◦ α ◦ γ | β ∈ Y1, γ ∈ U1 }.

The space of bi-orbits can be endowed with
the quotient topology via the map:

X1 ↠ Y[X1]U.

Theorem (W.)
Let X be a logical groupoid and let Y ⊆ X be a
subgroupoid.
The inclusion Y ⊆ X yields an equivalence

Sh(Y) ' Sh(X)
if and only if, for each open subgroupoid U ⊆ X,
the map

Y[s−1(U) ∩ t−1(Y0)]U → X[s−1(U0)]U

Y[α]U 7→ X[α]U

is a quasi-homeomorphism.



Weak equivalences

Let X be a topological groupoid, and let
Y,U ⊆ X be subgroupoids.
Each arrow α ∈ X1 comes with a left
Y-action and a right U-action:

(β, α) 7→ β ◦ α, (α, γ) 7→ α ◦ γ,

where β ∈ Y1 and γ ∈ U1.
The bi-orbit for these actions is the set

Y[α]U = {β ◦ α ◦ γ | β ∈ Y1, γ ∈ U1 }.

The space of bi-orbits can be endowed with
the quotient topology via the map:

X1 ↠ Y[X1]U.

Theorem (W.)
Let X be a logical groupoid and let Y ⊆ X be a
subgroupoid.
The inclusion Y ⊆ X yields an equivalence

Sh(Y) ' Sh(X)
if and only if, for each open subgroupoid U ⊆ X,
the map

Y[s−1(U) ∩ t−1(Y0)]U → X[s−1(U0)]U

Y[α]U 7→ X[α]U

is a quasi-homeomorphism.



Weak equivalences

Let X be a topological groupoid, and let
Y,U ⊆ X be subgroupoids.
Each arrow α ∈ X1 comes with a left
Y-action and a right U-action:

(β, α) 7→ β ◦ α, (α, γ) 7→ α ◦ γ,

where β ∈ Y1 and γ ∈ U1.
The bi-orbit for these actions is the set

Y[α]U = {β ◦ α ◦ γ | β ∈ Y1, γ ∈ U1 }.

The space of bi-orbits can be endowed with
the quotient topology via the map:

X1 ↠ Y[X1]U.

Theorem (W.)
Let X be a logical groupoid and let Y ⊆ X be a
subgroupoid.
The inclusion Y ⊆ X yields an equivalence

Sh(Y) ' Sh(X)
if and only if, for each open subgroupoid U ⊆ X,
the map

Y[s−1(U) ∩ t−1(Y0)]U → X[s−1(U0)]U

Y[α]U 7→ X[α]U

is a quasi-homeomorphism.



Weak equivalences

Let X be a topological groupoid, and let
Y,U ⊆ X be subgroupoids.
Each arrow α ∈ X1 comes with a left
Y-action and a right U-action:

(β, α) 7→ β ◦ α, (α, γ) 7→ α ◦ γ,

where β ∈ Y1 and γ ∈ U1.
The bi-orbit for these actions is the set

Y[α]U = {β ◦ α ◦ γ | β ∈ Y1, γ ∈ U1 }.

The space of bi-orbits can be endowed with
the quotient topology via the map:

X1 ↠ Y[X1]U.

Theorem (W.)
Let X be a logical groupoid and let Y ⊆ X be a
subgroupoid.
The inclusion Y ⊆ X yields an equivalence

Sh(Y) ' Sh(X)
if and only if, for each open subgroupoid U ⊆ X,
the map

Y[s−1(U) ∩ t−1(Y0)]U → X[s−1(U0)]U

Y[α]U 7→ X[α]U

is a quasi-homeomorphism.

▷ Y[s−1(U) ∩ t−1(Y0)]U ⊆ Y[X1]U is the
subspace of bi-orbits

Y[x
α−→ y ]U

where x ∈ U0 and y ∈ Y0.



Weak equivalences

Let X be a topological groupoid, and let
Y,U ⊆ X be subgroupoids.
Each arrow α ∈ X1 comes with a left
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(β, α) 7→ β ◦ α, (α, γ) 7→ α ◦ γ,

where β ∈ Y1 and γ ∈ U1.
The bi-orbit for these actions is the set

Y[α]U = {β ◦ α ◦ γ | β ∈ Y1, γ ∈ U1 }.

The space of bi-orbits can be endowed with
the quotient topology via the map:

X1 ↠ Y[X1]U.

Theorem (W.)
Let X be a logical groupoid and let Y ⊆ X be a
subgroupoid.
The inclusion Y ⊆ X yields an equivalence

Sh(Y) ' Sh(X)
if and only if, for each open subgroupoid U ⊆ X,
the map

Y[s−1(U) ∩ t−1(Y0)]U → X[s−1(U0)]U

Y[α]U 7→ X[α]U

is a quasi-homeomorphism.

▷ X[s−1(U)]U ⊆ X[X1]U is the subspace of
bi-orbits

X[x
α−→ y ]U

where x ∈ U0.
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the inverse image map is a bijection on open
subsets.
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subgroup H ⊆ G is a weak equivalence if
and only if H is a dense subset of G .

Corollary (W.)
are Morita equivalent if and only if there
exist embeddings

X ⊆ W ⊇ Y

that are weak equivalences.
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Theorem (W.)
Let X be a logical groupoid and let Y ⊆ X be a
subgroupoid.
The inclusion Y ⊆ X yields an equivalence

Sh(Y) ' Sh(X)
if and only if, for each open subgroupoid U ⊆ X,
the map

Y[s−1(U) ∩ t−1(Y0)]U → X[s−1(U0)]U

Y[α]U 7→ X[α]U

is a quasi-homeomorphism.

Definition
A subgroupoid inclusion Y ⊆ X satisfying the
theorem is said to be a weak equivalence.

Proposition
If G is a logical group, the inclusion of a
subgroup H ⊆ G is a weak equivalence if
and only if H is a dense subset of G .

Corollary (W.)
Two logical groupoids X,Y are Morita
equivalent if and only if there exist
embeddings

X ⊆ W ⊇ Y

that are weak equivalences.



Weak equivalences

Theorem (W.)
Let X be a logical groupoid and let Y ⊆ X be a
subgroupoid.
The inclusion Y ⊆ X yields an equivalence

Sh(Y) ' Sh(X)
if and only if, for each open subgroupoid U ⊆ X,
the map

Y[s−1(U) ∩ t−1(Y0)]U → X[s−1(U0)]U

Y[α]U 7→ X[α]U

is a quasi-homeomorphism.

Definition
A subgroupoid inclusion Y ⊆ X satisfying the
theorem is said to be a weak equivalence.

Proposition
If G is a logical group, the inclusion of a
subgroup H ⊆ G is a weak equivalence if
and only if H is a dense subset of G .

Corollary (W.)
Let T1,T2 be theories with representing
groupoids of models X,Y.
Then T1,T2 are Morita equivalent if and
only if there exist embeddings

X ⊆ W ⊇ Y

that are weak equivalences.
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