(Co)Fibrations, (pseudo)distributive laws and (quasi)toposes Toposes in Mondovì

Igor Baković September 10, 2024

Table of contest

(Co)lax monads, lax algebras and associated (co)fibrations

2 Admissibility

(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

(Co)lax monads, lax algebras and associated (co)fibrations

A colax monad on a 2-category ${\mathscr K}$ consists of the following data:

1) a colax functor $T \colon \mathscr{K} \to \mathscr{K}$

A colax monad on a 2-category ${\mathscr K}$ consists of the following data:

- 1) a colax functor $T: \mathcal{K} \to \mathcal{K}$
- 2) a colax transformation $\eta: I_{\mathcal{K}} \to T$

A colax monad on a 2-category ${\mathscr K}$ consists of the following data:

- 1) a colax functor $T: \mathcal{K} \to \mathcal{K}$
- 2) a colax transformation $\eta: I_{\mathcal{K}} \to T$
- 3) a colax transformation $\mu \colon T^2 \to T$

A colax monad on a 2-category ${\mathscr K}$ consists of the following data:

- 1) a colax functor $T \colon \mathcal{K} \to \mathcal{K}$
- 2) a colax transformation $\eta: I_{\mathscr{K}} \to T$
- 3) a colax transformation $\mu \colon T^2 \to T$
- 4) families $\lambda_X : \mu_X T(\eta_X) \Rightarrow 1_{TX}$, $\rho_X : 1_{TX} \Rightarrow \mu_X \circ \eta_{TX}$ and $\alpha_X : T\mu_X \circ \mu_X \Rightarrow \mu_{TX} \circ \mu_X$ of 2-cells in $\mathscr K$

1)
$$(\alpha_X \circ \eta_{T^2X})(\mu_X \circ \eta_{\mu_X})(\rho_X \circ \mu_X) = \mu_X \circ \rho_{TX} : \mu_X \Rightarrow \mu_X \circ \mu_{TX} \circ \eta_{T^2X}$$

2) $(\mu_f \circ \eta_{TX})(\mu_{X'} \circ \eta_{Tf})(\rho_{X'} \circ Tf) = Tf \circ \rho_X \colon Tf \Rightarrow Tf \circ \mu_X \circ \eta_{TX'}, \forall f \colon X \to X'$

3)
$$(Tf \circ \lambda_X)(\mu_f \circ T\eta_X)(\mu_{X'} \circ c^T)(\mu_{X'} \circ T\eta_f) = (\lambda_{X'} \circ Tf)(\mu_{X'} \circ c^T) : \mu_{X'} \circ T(\eta_{X'} \circ f) \Rightarrow Tf, \forall f : X \to X'$$

4)
$$(\mu_X \circ \lambda_{TX})(\alpha_X \circ T\eta_{TX})(\mu_X \circ c^T)(\mu_X \circ T\rho_X) = \mu_X \circ e^T : \mu_X \circ T1_{TX} \Rightarrow \mu_X \circ 1_{T^2X}$$

5)
$$(\lambda_X \circ \eta_X)(\mu_X \circ \eta_{\eta_X})(\rho_X \circ \eta_X) = 1_{\eta_X}$$

6)
$$(\lambda_X \circ \mu_X)(\mu_X \circ \mu_{\eta_X})(\alpha_X \circ T^2 \eta_X)(\mu_X \circ c^T) = (\mu_X \circ e^T)(\mu_X \circ T \lambda_X) : \mu_X \circ T(\mu_X \circ T \eta_X) \Rightarrow \mu_X$$

7)
$$(\alpha_X \circ \mu_{T^2X})(\mu_X \circ \mu_{\mu_X})(\alpha_X \circ T^2 \mu_X)(\mu_X \circ c^T) = (\mu_X \circ \alpha_{TX})(\alpha_X \circ T \mu_{TX})(\mu_X \circ c^T)(\mu_X \circ T \alpha_X) : \mu_X \circ T(\mu_X \circ T \mu_X) \Rightarrow \mu_X \circ \mu_{TX} \circ \mu_{T^2X}$$

8) $(\mu_f \circ \mu_{TX})(\mu_{X'} \circ \mu_{Tf})(\alpha_X \circ T^3 f)(\mu_{X'} \circ c^T) = (Tf \circ \alpha_X)(\mu_f \circ T\mu_X)(\mu_{X'} \circ c^T)(\mu_{X'} \circ T\mu_f) : \mu_{X'} \circ T(\mu_{X'} \circ T^2 f) \Rightarrow Tf \circ \mu_X \circ \mu_{TX}, \forall f : X \to X'$

Let $T\colon \mathscr{K} \to \mathscr{K}$ be an underlying colax functor of a colax monad $(\mathcal{T}, \eta, \mu, \lambda, \rho, \alpha)$ on the 2-category \mathscr{K} . A lax \mathcal{T} -algebra $(X, \xi, \iota_{\xi}, \kappa_{\xi})$ consists of:

1) an object X of \mathcal{K}

Let $T: \mathcal{K} \to \mathcal{K}$ be an underlying colax functor of a colax monad $(\mathcal{T}, \eta, \mu, \lambda, \rho, \alpha)$ on the 2-category \mathcal{K} . A lax \mathcal{T} -algebra $(X, \xi, \iota_{\xi}, \kappa_{\xi})$ consists of:

- 1) an object X of \mathcal{K}
- 2) a 1-cell $\xi \colon TX \to X$ of \mathscr{K}

Let $T: \mathscr{K} \to \mathscr{K}$ be an underlying colax functor of a colax monad $(T, \eta, \mu, \lambda, \rho, \alpha)$ on the 2-category \mathscr{K} . A lax T-algebra $(X, \xi, \iota_{\xi}, \kappa_{\xi})$ consists of:

- 1) an object X of \mathcal{K}
- 2) a 1-cell $\xi \colon TX \to X$ of \mathscr{K}
- 3) a 2-cell $\iota_{\xi} \colon 1_{X} \Rightarrow \xi \circ \eta_{X}$ of \mathscr{K}

Let $T: \mathcal{K} \to \mathcal{K}$ be an underlying colax functor of a colax monad $(T, \eta, \mu, \lambda, \rho, \alpha)$ on the 2-category \mathcal{K} . A lax T-algebra $(X, \xi, \iota_{\xi}, \kappa_{\xi})$ consists of:

- 1) an object X of \mathcal{K}
- 2) a 1-cell $\xi \colon TX \to X$ of \mathscr{K}
- 3) a 2-cell $\iota_{\mathcal{E}} \colon 1_X \Rightarrow \xi \circ \eta_X$ of \mathcal{K}
- 4) a 2-cell $\kappa_{\xi} \colon \xi \circ T\xi \Rightarrow \xi \circ \mu_X$ of \mathcal{K}

1)
$$(\kappa_{\xi} \circ \eta_{TX})(\xi \circ \eta_{\xi})(\iota_{\xi} \circ \xi) = \xi \circ \rho_{X} : \xi \Rightarrow \xi \circ \mu_{X} \circ \eta_{TX}$$

2)
$$(\xi \circ \lambda_X)(\kappa_\xi \circ T \eta_X)(\xi \circ c^T)(\xi \circ T \iota_\xi) = \xi \circ e^T : \xi \circ T 1_X \Rightarrow \xi \circ 1_{TX}$$

3)
$$(\kappa_{\xi} \circ \mu_{TX})(\xi \circ \mu_{\xi})(\kappa_{\xi} \circ T^{2}\xi)(\xi \circ c^{T}) = (\xi \circ \alpha_{X})(\kappa_{\xi} \circ T \mu_{X})(\xi \circ c^{T})(\xi \circ T \kappa_{\xi}) : \xi \circ T(\xi \circ T \xi) \Rightarrow \xi \circ \mu_{X} \circ \mu_{TX}$$

Extension of the definition of the associated split fibration

We consider functors as *generalized fibrations* (following Bénabou) in order to extend the definition of associated split fibration

1) from the 2-category ($\mathscr{C}at,\mathscr{B}$) whose 1-cells are triangles

2) to the 2-category $\mathscr{C}at_c^2$ whose 1-cells are colax squares

$$\begin{array}{c|c}
\mathcal{E} & \xrightarrow{F} \mathcal{D} \\
P \downarrow & \beta_{\mathcal{J}} & \downarrow Q \\
\mathcal{B} & \xrightarrow{JJ} \mathcal{E}
\end{array}$$

3) ultimately to the double category $\mathbb{C}at^2$ whose horizontal (vertical) cells are (co)lax squares.

Associated split fibration 2-monad

Consider the following square

 $\mathscr{F}(P)\colon (\mathscr{B},P)\to \mathscr{B}$ and $E_P\colon (\mathscr{B},P)\to \mathscr{E}$ send any object $(\mathcal{B},\mathcal{p},E)$ in (\mathscr{B},P) (where $\mathcal{p}\colon \mathcal{B}\to P(E)$) to \mathcal{B} and \mathcal{E} respectively.

Associated split fibration 2-monad

From the universal property of comma squares there exists a unique functor $\mathscr{F}(F,\beta,U)\colon (\mathscr{B},P)\to (\mathscr{C},Q)$ which takes any object (B,p,E) in (\mathscr{B},P) to $(U(B),\beta_EU(p),F(E))$ and any morphism $(u,e)\colon (B,p,E)\to (B',p',E')$ to the morphism $\mathscr{F}(F,\beta,U)(u,e):=(U(u),F(e))$ represented by a diagram

Theorem

There exists a colax idempotent 2-monad whose underlying 2-functor

$$\mathscr{F}:\mathscr{C}at^2_c\to\mathscr{C}at^2_c$$

is given by the above construction.

Functors $\mathscr{F}(F,\beta,U)$ and $\mathscr{F}(G,\gamma,V)$ take an object (B,p,E) to $\mathscr{F}(F,\beta,U)(B,p,E):=(U(B),\beta_EU(p),F(E))$ and $\mathscr{F}(G,\gamma,V)(B,p,Q):=(V(B),\gamma_EV(p),G(E))$ respectively.

Components of the unit N_P and multiplication M_P of \mathscr{F}

$$N_P(E) = (P(E), 1_{P(E)}, E)$$

$$M_P = \mathscr{F}(E_P, \varphi_P), \qquad M_P(B, f, B', g, E) = (B, gf, E)$$

Universal properties of local units and counits of ${\mathscr F}$

are counit and unit of the fully faithful adjoint triple

$$N_{\mathscr{T}(P)} \dashv \mathscr{T}(E_P) \dashv \mathscr{T}(N_P)$$

The associated split fibration \mathscr{F} double monad

The definition requires the existence of pulbacks in base categories! Its domain is a double 2-category ($\mathbb{C}at$, $\mathbb{C}art$) where $\mathbb{C}art$ is an (enhanced) 2-category of categories with pullbacks.

The associated split cofibration \mathscr{F}° 2-monad

1. The associated split cofibration \mathscr{F}° is defined as dual to \mathscr{F} :

$$\mathcal{F}^{\circ}(P):=(\mathcal{F}(P^{op}))^{op}$$

The associated split cofibration \mathscr{F}° 2-monad

1. The associated split cofibration \mathscr{F}° is defined as dual to \mathscr{F} :

$$\mathcal{F}^{\circ}(P):=(\mathcal{F}(P^{op}))^{op}$$

2. It requires no conditions on lax squares

The associated split cofibration \mathscr{F}° 2-monad

1. The associated split cofibration \mathscr{F}° is defined as dual to \mathscr{F} :

$$\mathscr{F}^{\circ}(P) := (\mathscr{F}(P^{op}))^{op}$$

- 2. It requires no conditions on lax squares
- It requires the existence of pushouts in base categories for colax squares

Pseudo-distributive law between fibrations and cofibrations

The associated Beck-Chevalley fibration

 The associated Beck-Chevalley fibrations are pseudoalgebras for the pseudo-distributive law

$$\lambda \colon \mathscr{F}\mathscr{F}^{\circ} \Rightarrow \mathscr{F}^{\circ}\mathscr{F}$$

The associated Beck-Chevalley fibration

 The associated Beck-Chevalley fibrations are pseudoalgebras for the pseudo-distributive law

$$\lambda \colon \mathscr{F}\mathscr{F}^{\circ} \Rightarrow \mathscr{F}^{\circ}\mathscr{F}$$

A natural candidate for the domain of its underlying 2-functor

$$\mathscr{F}\mathscr{F}^{\circ}$$
: $(\mathscr{C}\mathsf{at}, \mathcal{QT}\mathsf{op}) \to (\mathscr{C}\mathsf{at}, \mathcal{QT}\mathsf{op})$

is a double comma 2-category ($\mathscr{C}at$, $\mathcal{QT}op$) where $\mathcal{QT}op$ is a 2-category of quasitoposes and geometric morphisms

The associated Beck-Chevalley fibration

 The associated Beck-Chevalley fibrations are pseudoalgebras for the pseudo-distributive law

$$\lambda \colon \mathscr{F}\mathscr{F}^{\circ} \Rightarrow \mathscr{F}^{\circ}\mathscr{F}$$

A natural candidate for the domain of its underlying 2-functor

$$\mathscr{F}\mathscr{F}^{\circ}$$
: $(\mathscr{C}\mathsf{at}, \mathcal{QT}\mathsf{op}) \to (\mathscr{C}\mathsf{at}, \mathcal{QT}\mathsf{op})$

is a double comma 2-category ($\mathscr{C}at$, $\mathcal{QT}op$) where $\mathcal{QT}op$ is a 2-category of quasitoposes and geometric morphisms

• A quasitopos is a finitely complete, finitely cocomplete, locally cartesian closed category $\mathscr C$ in which there exists an object Ω that classifies strong monomorphisms.

(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Admissibility

Admissible 1-cells

Definition

Let $(T, \eta, \mu) \colon \mathscr{K} \to \mathscr{K}$ be a lax idempotent 2-monad on the 2-category \mathscr{K} . We say that the 1-cell $f \colon C \to D$ in \mathscr{K} is admissible if its image T(f) has a right adjoint μ_f . In the dual case of a colax idempotent 2-monad we say that the 1-cell $f \colon C \to D$ in \mathscr{K} is admissible if T(f) has a left adjoint ν_f .

Admissible objects

Definition

Let $(T, \eta, \mu) \colon \mathscr{K} \to \mathscr{K}$ be a (co)lax idempotent 2-monad on the 2-category \mathscr{K} with a terminal object \top . We say that an object E of \mathscr{K} is admissible if the unique 1-cell $!_E \colon E \to \top$ is admissible.

Definition

Let (T, η, μ) : $\mathcal{K} \to \mathcal{K}$ be a lax idempotent 2-monad on the 2-category \mathcal{K} . We say that (T, η, μ) is admissible if the following bicomma object condition holds:

1) the 2-category $\mathcal K$ has bicomma objects $f \downarrow g$ of diagrams

where 1-cells p and q are admissible.

2) the canonical 2-cell $T(q)\mu_p \Rightarrow \mu_f T(g)$ is a 2-isomorphism.

Definition

Let $(T, \eta, \mu) \colon \mathscr{K} \to \mathscr{K}$ be a lax idempotent 2-monad on the 2-category \mathscr{K} . We say that (T, η, μ) is admissible if the following bicomma object condition holds:

1) the 2-category $\mathcal K$ has bicomma objects $f \downarrow g$ of diagrams

where 1-cells p and q are admissible.

2) the canonical 2-cell $T(q)\mu_p \Rightarrow \mu_f T(g)$ is a 2-isomorphism.

The admissibility of associated split (co)fibrations

Theorem

The associated split fibration 2-monad is admissible.

The two triangle identities

$$\mathscr{F}(F,\beta,U)$$

$$\mathscr{F}(F,\beta,U)\mathscr{F}(F^*,\lambda,L)\mathscr{F}(F,\beta,U)$$

$$\mathscr{F}(F,\beta,U)\mathscr{F}(F,\beta,U)$$

$$\mathscr{F}(F^*,\lambda,L)\widetilde{\mathscr{F}}(F^*,\lambda,L)$$

$$\mathscr{F}(F^*,\lambda,L)\mathscr{F}(F,\beta,U)\mathscr{F}(F^*,\lambda,L)$$

are represented by the following diagrams

Definition

A functor $U \colon \mathscr{A} \to \mathscr{B}$ is a local right adjoint if the restriction

$$U_A \colon (\mathscr{A}, A) \to (\mathscr{B}, U(A))$$

of U to the slice (\mathscr{A},A) category for each object A of \mathscr{A} has a left adjoint

$$L_A \colon (\mathscr{B}, U(A)) \to (\mathscr{A}, A).$$

Equivalently, each fiber $U_A : (\mathscr{A}, A) \to (\mathscr{B}, U(A))$ of the diagram

$$\begin{array}{ccc}
\mathscr{A}^2 \xrightarrow{U^2} \mathscr{B}^2 \\
\operatorname{cod} \downarrow & \downarrow \operatorname{cod} \\
\mathscr{A} \xrightarrow{U} \mathscr{B}
\end{array}$$

has a left adjoint.

(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Theorem

Right multiadjoints are admissible objects for the associated split fibration 2-monad.

- M. Bunge, A. Carboni, The symmetric topos, Journal of Pure and Applied Algebra 105 (1995), 233-249.
- M. Bunge, J. Funk, On a bicomma object condition for KZ-doctrines, Journal of Pure and Applied Algebra 143 (1999), 69-105.
- P.T. Johnstone, Fibrations and Partial Products in a 2-Category, Applied Categorical Structures 1 (1993), 141-179.
- P.T. Johnstone, Connected limits, familial representability and Artin glueing, Mathematical Structures in Computer Science vol. 5 (1995), 441-459.
- A. Osmond, On Diers theory of Spectrum I: Stable functors and right multi-adjoints, arXiv:2012.00853.
- A. Osmond, On Diers theory of Spectrum II: Geometries and dualities, arXiv:2012.02167.