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Definition

A colax monad on a 2-category K consists of the following data:

1) a colax functor T : K → K

2) a colax transformation η : IK → T

3) a colax transformation µ : T 2 → T

4) families λX : µXT (ηX )⇒ 1TX , ρX : 1TX ⇒ µX ◦ ηTX and
αX : TµX ◦ µX ⇒ µTX ◦ µX of 2-cells in K

such that the following axioms are satisfied:
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1) (αX ◦ ηT 2X )(µX ◦ ηµX )(ρX ◦ µX ) = µX ◦ ρTX : µX ⇒
µX ◦ µTX ◦ ηT 2X

T 2X

µX

��

ηT2X // T 3X

T (µX )

��

µTX
��

CKρTX

T 2X

µX

��

;CηµX

TX
ηTX // T 2X

µX

��

;CαX

3;αX

CKρX

TX
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2) (µf ◦ηTX )(µX ′◦ηTf )(ρX ′◦Tf ) = Tf ◦ρX : Tf ⇒ Tf ◦µX ◦ηTX ′ ,
∀f : X → X ′

TX

Tf

��

ηTX // T 2X

T 2f

��

µTX

��

CKρX

TX

Tf

��

;CηTf

TX ′
ηTX ′ // T 2X ′ µX ′

��

;CαX

3;µf

CKρX ′

TX ′
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3) (Tf ◦ λX )(µf ◦ TηX )(µX ′ ◦ cT )(µX ′ ◦ Tηf ) =
(λX ′ ◦ Tf )(µX ′ ◦ cT ) : µX ′ ◦ T (ηX ′ ◦ f )⇒ Tf , ∀f : X → X ′

TX

Tf

��

TηX��

����

T 2X µX
//

T 2f

��

CKλX

TX

Tf

��

{�
cT

;CcT

TX ′

T (ηX ′ ) ��

3;Tηf

;Cµf

T 2X ′ µX ′
//

CKλX ′

TX
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4) (µX ◦ λTX )(αX ◦ TηTX )(µX ◦ cT )(µX ◦ TρX ) =
µX ◦ eT : µX ◦ T1TX ⇒ µX ◦ 1T 2X

T 2X

TηTX��

����

T 3X µTX
//

T (µX )

��

CKλTX

T 2X

µX

��

{�
eT

;CcT

;CeT

T 2X
µX

++

3;TρX

;CαX

T 2X µX
// TX
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5) (λX ◦ ηX )(µX ◦ ηηX )(ρX ◦ ηX ) = 1ηX

X

ηX

��

ηX //

ηX ��

TX

TηX

��

TX TX
;CηηX

TX
ηTX // T 2X

µX

��

3;λX

TX

CKρX

TX
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6) (λX ◦ µX )(µX ◦ µηX )(αX ◦ T 2ηX )(µX ◦ cT ) =
(µX ◦ eT )(µX ◦ TλX ) : µX ◦ T (µX ◦ TηX )⇒ µX

T 2X
µX //

T 2ηX

��

��

T (µX ◦TηX )

��

TX
TηX

��

s{
TλXs{

eT

T 3X µTX
//

TµX

��

CKµηX

{� λX

T 2X

µX

��

;CcT

;CαX

T 2X µX
// TX
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7) (αX ◦ µT 2X )(µX ◦ µµX )(αX ◦ T 2µX )(µX ◦ cT ) =
(µX ◦ αTX )(αX ◦ TµTX )(µX ◦ cT )(µX ◦ TαX ) : µX ◦ T (µX ◦
TµX )⇒ µX ◦ µTX ◦ µT 2X

T 4X

T 2µX

��

T (µX ◦µTX )

��

T (µX ◦TµX )

��

µT2X //
TµTX

��

T 3X

TµX

��

µTX

��
T 3X µTX

//

TµX

��

CKαTX

T 2X

µX

��

{�
cT

;CcT
;CµµX

T 3X

TµX ��

µTX //

3;TαX

T 2X
µX

��

;CαX

3;αX

T 2X µX
//

CKαX

TX
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8) (µf ◦ µTX )(µX ′ ◦ µTf )(αX ◦T 3f )(µX ′ ◦ cT ) = (Tf ◦ αX )(µf ◦
TµX )(µX ′ ◦ cT )(µX ′ ◦ Tµf ) : µX ′ ◦ T (µX ′ ◦ T 2f )⇒
Tf ◦ µX ◦ µTX , ∀f : X → X ′

T 3X

T 3f

��

µTX //
TµX

��

T (Tf ◦µX )

��

T (µX ′◦T 2f )

��

T 2X

T 2f

��

µX

��
T 2X µX

//

T 2f

��

CKαX

TX

Tf

��

{�
cT

;CcT
;CµTf

T 3X ′

TµX ′ ��

µTX ′ //

3;Tµf

T 2X ′
µX ′

��

;Cµf

3;µf

T 2X ′ µX ′
//

CKαX ′

TX ′
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Definition

Let T : K → K be an underlying colax functor of a colax monad
(T , η, µ, λ, ρ, α) on the 2-category K . A lax T -algebra
(X , ξ, ιξ, κξ) consists of:

1) an object X of K

2) a 1-cell ξ : TX → X of K

3) a 2-cell ιξ : 1X ⇒ ξ ◦ ηX of K

4) a 2-cell κξ : ξ ◦ T ξ ⇒ ξ ◦ µX of K

such that the following axioms are satisfied:
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1) (κξ ◦ ηTX )(ξ ◦ ηξ)(ιξ ◦ ξ) = ξ ◦ ρX : ξ ⇒ ξ ◦ µX ◦ ηTX

TX

ξ

��

ηTX // T 2X

Tξ

��

µX

��

CKρX

TX

ξ

��

;Cηξ

X
ηX // TX

ξ

��

3;κξ

CKιξ

X
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2) (ξ◦λX )(κξ ◦TηX )(ξ◦cT )(ξ◦T ιξ) = ξ◦eT : ξ◦T1X ⇒ ξ◦1TX

TX
TηX //

T (ξ◦ηX )

��

T1X

%%

�� λX
T 2X

Tξ

��

µX

��

{�
eT

TX

ξ

��

;CT ιξ

;CcT

TX

ξ ++

TX
ξ

��

3;κξ

X

Igor Baković September 10, 2024 (Co)Fibrations, (pseudo)distributive laws and (quasi)toposes
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3) (κξ ◦ µTX )(ξ ◦ µξ)(κξ ◦ T 2ξ)(ξ ◦ cT ) =
(ξ◦αX )(κξ◦TµX )(ξ◦cT )(ξ◦Tκξ) : ξ◦T (ξ◦T ξ)⇒ ξ◦µX ◦µTX

T 3X

T 2ξ

��

T (ξ◦µX )

��

T (ξ◦Tξ)

��

µTX //
TµX

��

T 2X

T (ξ)

��

µX

��
T 2X µX

//

Tξ

��

CKαX

TX

ξ

��

{�
cT

;CcT
;Cµξ

T 2X

T (ξ) ��

µX //

3;Tκξ

TX
ξ

��

;Cκξ

3;κξ

TX
ξ

//

CKκξ

X
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Extension of the definition of the associated split fibration

We consider functors as generalized fibrations (following Bénabou)
in order to extend the definition of associated split fibration

1) from the 2-category (C at,B) whose 1-cells are triangles

E
F //

P ��

D

Q��
B

+3β

2) to the 2-category C at2
c whose 1-cells are colax squares

E
F //

P
��

D

Q
��

B
U
// C

;Cβ

3) ultimately to the double category Cat2 whose horizontal
(vertical) cells are (co)lax squares.
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Associated split fibration 2-monad

Consider the following square

(B,P)

F (P)

��

F (F ,β,U)
��

EP // E

P

��

F
��

(C ,Q)
EQ //

F (Q)

��

F

Q

��

;CϕP

B

U ��

B
U
��

;CϕQ

3;β

C C

F (P) : (B,P)→ B and EP : (B,P)→ E send any object
(B, p,E ) in (B,P) (where p : B → P(E )) to B and E respectively.
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Associated split fibration 2-monad

From the universal property of comma squares there exists a
unique functor F (F , β,U) : (B,P)→ (C ,Q) which takes any
object (B, p,E ) in (B,P) to (U(B), βEU(p),F (E )) and any
morphism (u, e) : (B, p,E )→ (B ′, p′,E ′) to the morphism
F (F , β,U)(u, e) := (U(u),F (e)) represented by a diagram

U(B)

U(p)

��

U(u)// U(B ′)

U(p′)

��
UP(E )

βE

��

UP(e)
// UP(E ′)

βE ′

��
QF (E )

QF (e)
// QF (E ′)
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Theorem

There exists a colax idempotent 2-monad whose underlying
2-functor

F : C at2
c → C at2

c

is given by the above construction.
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(B,P)
EP //

F (P)

��

F (F ,β,U)
))

F (G ,γ,V )
��

E

P

��

F
//

G

��
(C ,Q)

F (Q)

��

EQ //

;C(θ,F (τ))

D

Q

��

;Cτ

B
IB

//

U //

V

��

B

U //

V

��

3;β
3;γ

C
IC

//

;Cθ

C

;Cθ

U(B)

U(p)

��

U(u)
��

θB // V (B)

V (p)
��

V (u)
��

U(B ′)
θB′ //

U(p′)

��

F

V (p′)

��

UP(E )
θP(E) //

UP(e)

��
βE

��

VP(E )

VP(e) ��

γE
��

UP(E ′)
θP(E ′) //

βE ′

��

VP(E ′)

γE ′

��

QF (E )

QF (e)
��

Q(τE ) // QG (E )

QG(e)
��

QF (E ′)
Q(τE ′ )

// QG (E ′)

Functors F (F , β,U) and F (G , γ,V ) take an object (B, p,E ) to
F (F , β,U)(B, p,E ) := (U(B), βEU(p),F (E )) and
F (G , γ,V )(B, p,Q) := (V (B), γEV (p),G (E )) respectively.
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Components of the unit NP and multiplication MP of F

(B,P)

I(B,P)

''

T (P)

��

EP

��

NT (P) //

�� η̃(EP ,ϕP )

(B, (B,P))

T 2(P)

��

J T (EP ,ϕP)
��

ET (P) // (B,P)

T (P)

��
�O

�O

�O

�O

�O
EP

��
E

IE

&&
NP

//

P

��

(B,P)
EP //

T (P)

��

E

P

��

;CϕT (P)

B
IB

3;ϕP

B
IB

B

;CϕP

3;ϕP

B
IB

B
IB

B

NP(E ) = (P(E ), 1P(E),E )

MP = F (EP , ϕP), MP(B, f ,B ′, g ,E ) = (B, gf ,E )
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Universal properties of local units and counits of F

B

iB

��

u
��

u
��

B ′

iB′

��

iB′ // B ′

g

��

B

f
��

u
��

gu

��
B ′

hg

��

g
// B ′′

h

��

P(E )

P(e)�� ��
P(E ′)

P(iE ′ )
P(E ′)

B

g

��

iB

��
u
��

B

hg

��

u // B ′

k

��

B ′P(e)h

h
��

h
�� ��

P(E )

1P(E)

P(e)
// P(E ′)

P(E )

P(e) ��
P(E )

P(e)
// P(E ′)

are counit and unit of the fully faithful adjoint triple

NT (P) a T (EP) a T (NP)
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The associated split fibration F double monad

H

W

��

C

��

D // E

P

��

F
��

s{
ρ

G
G //

R

��

CKκ

s{
π

D

Q

��

;Cν

X

K ��

M // B
U
��

;Cµ

A
V

//

CK
δ

C

(H ,W )

T (W )

��

T (C)

��

T (D) // (B,P)

T (P)

��

T (F )

��

s{
F (ρ)

(A ,R)
T (G) //

T (R)

��

CKF (κ),

s{
F (π)

(C ,Q)

T (Q)

��

X

K ��

M // B
U
��

A
V

//

CK
δ

C

The definition requires the existence of pulbacks in base categories!
Its domain is a double 2-category (Cat,Cart) where Cart is an
(enhanced) 2-category of categories with pullbacks.
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Definition of the associated split fibration F on lax squares

B

p

��
P(E )
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Definition of the associated split fibration F on lax squares

U(B)

U(p)

��
UP(E )
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Definition of the associated split fibration F on lax squares

U(B)

U(p)

��
QF (E ) πE

// UP(E )
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Definition of the associated split fibration F on lax squares

QF (E )×UP(E) U(B)

pr1=F (F )(B,p,E)

��

F (π)(B,p,E)// U(B)

U(p)

��
QF (E ) πE

// UP(E )
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Definition of the associated split fibration F on lax squares

B ′

p′

��

QF (E )×UP(E) U(B)

pr1=F (F )(B,p,E)

��

F (π)(B,p,E)// U(B)

U(p)

��

P(E ′)

QF (E ) πE
// UP(E )

Igor Baković September 10, 2024 (Co)Fibrations, (pseudo)distributive laws and (quasi)toposes



(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition of the associated split fibration F on lax squares

U(B ′)

U(p′)

��

QF (E )×UP(E) U(B)

pr1=F (F )(B,p,E)

��

F (π)(B,p,E)// U(B)

U(p)

��

UP(E ′)

QF (E ) πE
// UP(E )
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QF (E ′)×UP(E ′) U(B ′)

pr1=F (F )(B′,p′,E ′)
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F (π′)(B′,p′,E ′)// U(B ′)

U(p′)

��

QF (E )×UP(E) U(B)

pr1=F (F )(B,p,E)
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Definition of the associated split fibration F on lax squares

QF (E ′)×UP(E ′) U(B ′)

pr1=F (F )(B′,p′,E ′)

��

F (π′)(B′,p′,E ′)// U(B ′)

U(p′)

��

U(b)

��
QF (E )×UP(E) U(B)

pr1=F (F )(B,p,E)

��

F (π)(B,p,E)// U(B)

U(p)

��

QF (E ′) πE ′
//

QF (e)
��

UP(E ′)

UP(e)

��
QF (E ) πE

// UP(E )
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Definition of the associated split fibration F on lax squares

QF (E ′)×UP(E ′) U(B ′)

pr1=F (F )(B′,p′,E ′)

��

F (π′)(B′,p′,E ′)//

F (F )(b,e)

��

U(B ′)

U(p′)

��

U(b)

��
QF (E )×UP(E) U(B)

pr1=F (F )(B,p,E)

��

F (π)(B,p,E)// U(B)

U(p)

��

QF (E ′) πE ′
//

QF (e)
��

UP(E ′)

UP(e)

��
QF (E ) πE

// UP(E )
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The associated split cofibration F ◦ 2-monad

1. The associated split cofibration F ◦ is defined as dual to F :

F ◦(P) := (F (Pop))op

2. It requires no conditions on lax squares

3. It requires the existence of pushouts in base categories for
colax squares
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Igor Baković September 10, 2024 (Co)Fibrations, (pseudo)distributive laws and (quasi)toposes



(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Pseudo-distributive law between fibrations and cofibrations

(B, (P,B))

FF◦(P)

��

FF◦((U,π,F ) ��

λP //

�� λ(U,π,F )

((B,P),B)

F◦F (P)

��

F◦F (U,π,F )

��
(C , (Q,C ))

FF◦(Q)

��

λQ
// ((C ,Q),C )

F◦F (Q)

��

B

U ��

B
U

��
C C
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The component of a lax-natural transformation λ

P(E )

q

��
B

b
// Bq

Igor Baković September 10, 2024 (Co)Fibrations, (pseudo)distributive laws and (quasi)toposes



(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

The component of a lax-natural transformation λ

UP(E )

U(q)

��
U(B)

U(b)
// U(Bq)
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The component of a lax-natural transformation λ

QF (E )

πE

��

QF (E )

U(q)πE

��

UP(E )

U(q)

��
U(B)

U(b)
// U(Bq)
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The component of a lax-natural transformation λ

QF (E )

πE

��

U(B)×U(Bq) QF (E )

pr1

��

pr2 // QF (E )

U(q)πE

��

UP(E )

U(q)

��
U(B)

U(b)
// U(Bq)
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The component of a lax-natural transformation λ

QF (E )

πE

��

U(B)×U(Bq) QF (E )

pr1

��

pr2 // QF (E )

U(q)πE

��

U(B ×Bq P(E ))
U(pr2) //

U(pr1)
��

UP(E )

U(q)

��
U(B)

U(b)
// U(Bq)
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The component of a lax-natural transformation λ

U(B ×Bq P(E ))×UP(E) QF (E )

pr1

��

pr2=F (π)//

λ(U,π,F )

��

QF (E )

πE

��

U(B)×U(Bq) QF (E )

pr1

��

pr2 // QF (E )

U(q)πE

��

U(B ×Bq P(E ))
U(pr2) //

U(pr1)
��

UP(E )

U(q)

��
U(B)

U(b)
// U(Bq)
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The associated Beck-Chevalley fibration

The associated Beck-Chevalley fibrations are pseudoalgebras
for the pseudo-distributive law

λ : FF ◦ ⇒ F ◦F

A natural candidate for the domain of its underlying 2-functor

FF ◦ : (C at,QT op)→ (C at,QT op)

is a double comma 2-category (C at,QT op) where QT op is a
2-category of quasitoposes and geometric morphisms

A quasitopos is a finitely complete, finitely cocomplete, locally
cartesian closed category C in which there exists an object Ω
that classifies strong monomorphisms.
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Admissibility
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Admissible 1-cells

Definition

Let (T , η, µ) : K → K be a lax idempotent 2-monad on the
2-category K . We say that the 1-cell f : C → D in K is
admissible if its image T (f ) has a right adjoint µf . In the dual
case of a colax idempotent 2-monad we say that the 1-cell
f : C → D in K is admissible if T (f ) has a left adjoint νf .
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Admissible objects

Definition

Let (T , η, µ) : K → K be a (co)lax idempotent 2-monad on the
2-category K with a terminal object >. We say that an object E
of K is admissible if the unique 1-cell !E : E → > is admissible.
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Definition

Let (T , η, µ) : K → K be a lax idempotent 2-monad on the
2-category K . We say that (T , η, µ) is admissible if the following
bicomma object condition holds:

1) the 2-category K has bicomma objects f ↓ g of diagrams

B

g

��
C

f
// D

where 1-cells p and q are admissible.

2) the canonical 2-cell T (q)µp ⇒ µf T (g) is a 2-isomorphism.
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Definition

Let (T , η, µ) : K → K be a lax idempotent 2-monad on the
2-category K . We say that (T , η, µ) is admissible if the following
bicomma object condition holds:

1) the 2-category K has bicomma objects f ↓ g of diagrams

f ↓ g

q

��

p // B

g

��
C

f
// D

;C

where 1-cells p and q are admissible.

2) the canonical 2-cell T (q)µp ⇒ µf T (g) is a 2-isomorphism.
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The admissibility of associated split (co)fibrations

Theorem

The associated split fibration 2-monad is admissible.

The two triangle identities

F (F , β,U)
η̃F (F ,β,U)

s{
F (F , β,U)F (F ∗, λ, L)F (F , β,U)

F (F ,β,U)ε̃
+3 F (F , β,U)

F (F ∗, λ, L)
F (F∗,λ,L)η̃

s{
F (F ∗, λ, L)F (F , β,U)F (F ∗, λ, L)

ε̃F (F∗,λ,L)
+3 F (F ∗, λ, L)

are represented by the following diagrams
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U(B)

U(p)

��

ηU(B)

ww
ULU(B)

U(εB)
//

ULU(p)

��

U(B)

U(p)

��

UP(E )

βE

��

ηUP(E)

ww
ULUP(E )

U(εP(E))
//

UL(βE ) ��

UP(E )

ULQF (E )
U(λF (E)) ��
UPF ∗F (E )

βF∗F (E)

��

UP(ε̃E )
// UP(E )

βE

��

QF (E )Q(η̃F (E))

ww
QFF ∗F (E )

QF (ε̃E )
// QF (E )

L(C )

L(q)

��

L(ηC )
ww

LUL(C ) εL(C)

//

LUL(q)

��

L(C )

L(q)

��

LQ(D)

λD

��

L(ηQ(D))

ww
LULQ(D) εLQ(D)

//

LU(λD)

��

LQ(D)

λD

��

PF ∗(D)

LUPF ∗(D)
L(βF∗(D)) ��

εPF∗(D) //

εPF∗(D) 77

PF ∗(D)

LQFF ∗(D)
λFF∗(D) ��

PF ∗(D)

PF∗(η̃D)ww
PF ∗FF ∗(D)

P(ε̃F∗(D)
// PF ∗(D)
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Definition

A functor U : A → B is a local right adjoint if the restriction

UA : (A ,A)→ (B,U(A))

of U to the slice (A ,A) category for each object A of A has a left
adjoint

LA : (B,U(A))→ (A ,A).

Equivalently, each fiber UA : (A ,A)→ (B,U(A)) of the diagram

A 2

cod
��

U2
// B2

cod
��

A
U
// B

has a left adjoint.
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Theorem

Right multiadjoints are admissible objects for the associated split
fibration 2-monad.
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