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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition
A colax monad on a 2-category % consists of the following data:
1) a colax functor T: % — %

such that the following axioms are satisfied:
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition
A colax monad on a 2-category % consists of the following data:
1) a colax functor T: % — %

2) a colax transformation : [y — T

such that the following axioms are satisfied:
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition

A colax monad on a 2-category % consists of the following data:
1) a colax functor T: % — %
2) a colax transformation : [y — T
3) a colax transformation pu: T2 — T

such that the following axioms are satisfied:

Igor Bakovi¢ September 10, 2024 (Co)Fibrations, (pseudo)distributive laws and (quasi)toposes



(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition

A colax monad on a 2-category % consists of the following data:
1) a colax functor T: % — %
2) a colax transformation n: [, — T

3) a colax transformation pu: T2 — T
)

4) families Ax: px T(nx) = 17x, px: l1x = px onrx and
ax: Tuxoux = urx o ux of 2-cells in JZ

such that the following axioms are satisfied:

Igor Bakovi¢ September 10, 2024 (Co)Fibrations, (pseudo)distributive laws and (quasi)toposes



(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

1) (ax onraxy(kx o Mux)(px © fix) = pix © pTX: pix =
KX O BTX ©NT2X

T2X X T3X
//l | nw
\I\\TX
= T2X
|
x "Xg T(ux),
1%
X i, X

TX =— -5 — > T2X

X//l NOHEX
\\
X
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2) (prontxy(uxronte)(px o Tf) = Tfopx: Tf = Tfouxonrx,
Vi X = X

TX I — T2X

T anﬂ T2f |

Iy Tf
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Admissibility

3) (Tf o Ax)(ur o Tox)(pxr o €™ )(pxr o Try) =
()‘X’ o Tf)(,uxl e} CT)Z X! © T(T]X/ o f) = Tf, Vf: X = X'

\Tnx
M
™ >
T2f Mg i
)‘;\ C == = =
T2X' 4 o 1X
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4) (ux o Arx)(ax o Tnrx)(px o cT)(px o Tpx) =
pxoel s pxo Tlrx = px o ly2x

T2X
\ Tnrx
I3X i T2X
HTX
7
T(ux) 7 KX
T2
\\ [~ < \M\x
2 T - o
T-X ™ X
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5) (Ax onx)(fx © M )(px © nx) = Ly

X I TIX
k : \
TX : TX
3% anﬂ :
Tnx | Ax
|
|
Y
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6) (Ax o px)(px © pny)(ax o T?nx)(ux oc’) =
(uxoe")(ux o TAx): ux o T(ux o Tnx) = ux

T2X £ TX
\\f”x bg \\T”X
Il
ST3X i T2X
Y HTX
\
\\ y)\x
T(uxoTnx) \
P \
Tpx Otxﬂ \\\ X
\
\
\
\
A\Y
T2X TX

(224
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Admissibility

7) (ax o prax)(px © pux)(ax o T?ux)(ux oc’) =
(ux o arx)(ox o Turx)(px o c™)(pux o Tax): px o T(ux o
Tpx) = px o PTx © fiT2x
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8) (ur o prx)(pxr o e )(ax o T3 F)(puxr o c™) = (Tf o ax)(pf o
Tox)(pxr o cT)(puxr o Tue): px o T(ux: o T*f) =
Tfopuxoprx, VF: X = X/

nTx T2X
|
|
T X
K T2f |
Tfoux) [ l‘%
|
T2f "7 T
RSSO IV
N s
axl
7 .
T2X' = X'
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition

Let T: # — % be an underlying colax functor of a colax monad
(T,m, p, A, p, @) on the 2-category #". A lax T-algebra

(X, &, te, ke) consists of:

1) an object X of %

such that the following axioms are satisfied:
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition

Let T: # — % be an underlying colax functor of a colax monad
(T,m, p, A, p, @) on the 2-category #". A lax T-algebra

(X, &, te, ke) consists of:

1) an object X of %
2) alcell & TX — X of &

such that the following axioms are satisfied:
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition
Let T: # — % be an underlying colax functor of a colax monad
(T,m, p, A, p, @) on the 2-category #". A lax T-algebra
(X, &, te, ke) consists of:
1) an object X of %
2) alcell & TX — X of &

3) a2-cell te: 1x = Lonx of H

such that the following axioms are satisfied:
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition

Let T: # — % be an underlying colax functor of a colax monad
(T,m, p, A, p, @) on the 2-category #". A lax T-algebra

(X, &, te, ke) consists of:

1) an object X of %

2) alcell & TX — X of &

3) a2-cell te: 1x = Lonx of H

4) a 2-cell kg: Eo TE = Eopx of &
such that the following axioms are satisfied:
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

2) (€oAx)(heo Tnx)(€ocT)(€oTue) =€oe: €oTlx = Eolrx

X ™. 72x
/AN
(o}

T(€ony) ! X
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3) (ke o urx)(€ o pe)(re o T?E)(EocT) =
(oax)(reo Tux)(§ocT)(€oThe): EoT(£0TE) = EopxopTx

T3X X T2X
C AN
|
T TX
|
(¢opx) T re
I
g ¢
Y
****** =TX
N €
H&ﬂ AN N
\
X
£
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Extension of the definition of the associated split fibration

We consider functors as generalized fibrations (following Bénabou)
in order to extend the definition of associated split fibration
1) from the 2-category (% at, &) whose 1-cells are triangles

F 17
B

P\fi/o
7,

2) to the 2-category Cgati whose 1-cells are colax squares

&

&> 9
Pi v io
3) ultimately to the double category Cat? whose horizontal

(vertical) cells are (co)lax squares.
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Associated split fibration 2-monad

Consider the following square
Ep
(#, P)y(Fvﬁ,U) ‘g F

b Eo |

F(P): (#B,P) — % and Ep: (%, P) — & send any object
(B,p,E) in (A, P) (where p: B— P(E)) to B and E respectively.
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Associated split fibration 2-monad

From the universal property
unique functor .Z (F, 3, U):

of comma squares there exists a
(A, P) — (¢, Q) which takes any

object (B p, E) in (%, P) to (U(B), B U(p), F(E)) and any
morphism (u,e): (B,p,E) — (B, p’, E’) to the morphism

F(F, B, U)(u, €) := (U(u),

u(

U(p)

BE

QF

F(e)) represented by a diagram

B) 22 y(B)

up')
!/
(E)r UP(E)

»BE/

(EbrF ()
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Theorem

There exists a colax idempotent 2-monad whose underlying
2-functor

F: Cat® — Cat?

is given by the above construction.
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

QF (Bder-{ — =" > QG(E) |e

N A\
QF(G)QF(E/) Q(QG)(G)QG(E/)
TEI

Functors .Z(F, 3, U) and .%(G,~, V) take an object (B, p, E) to
‘?(Fvﬁa U)(B7pa E) = (U(B),,@EU([)), F(E)) and
F(G,v,V)(B,p,Q) :=(V(B),veV(p), G(E)) respectively.
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Components of the unit Np and multiplication Mp of .#

I, p)

\ "(Ep, P)\\\, Epl \
¢ Np (,%), I(DP) - 7 Péa
T(P) ; 2 {
A0 T 6oL O DR
P Pler P
R S N
\ N N
B B B
% %
Np(E) = (P(E), 1pE), E)
MP:y(EP,QOP), MP(B, f, B/,g, E):(B,gﬁ E)
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Universal properties of local units and counits of .7

B . B
u | u B | u
/I"/\ / | \
B —igt—> B’ B—+—8
| \
\ \
i B g hg| B'P(e)h |«
u, |\ &Y h, |~
¥ 1N\ £o0N
B ———B" P(E) P(E’)
F1 8 hlP(e)
Y \
hg P(E) h 1pg) P(E)
7/ N V4 AN
¥ P(e) \ v P(e) N\
P(E’ P(E' P(E) —— P(E’
(E) 55 P(E) (E) 5 PE)

are counit and unit of the fully faithful adjoint triple
Nz@py = 7 (Ep) 4 7 (Np)
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(Co)lax monads, lax algebras and associated (co)fibrations
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The associated split fibration .# double monad

f e — (W) ey 2= (#P)
C I
\ 7 \ \f N (K)ﬂy(c): \
g —2 (,R) ~ (¢, Q)
w v ‘ T(W)
> P‘ > > T(P) P
PR T Z(W7(R) T
Y @ v (@)
2 ---Y__ .2 2 ---Y__ .2
N U N U
\ 7 R K\ 7 A
o % o ¢

The definition requires the existence of pulbacks in base categories!
Its domain is a double 2-category (Cat, Cart) where Cart is an
(enhanced) 2-category of categories with pullbacks.
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition of the associated split fibration .% on lax squares

QF(E) UP(E)

TE
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition of the associated split fibration .% on lax squares

Z(7)(8,p,E)

QF(E) xyp(e) U(B) ———"U(B)

pr=%(F)(B,p,E)
U(p)

QF(E) UP(E)

TE
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(Co)lax monads, lax algebras and associated (co)fibrations
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Definition of the associated split fibration .% on lax squares

B’
I
I
|
éz(ﬂl)(B,p,E)
QF(E) X up(E) U(B)‘% u(B)
‘P
|
pn=%(F)(B,p,E) Y
P(E") U(p)
QF(E) — UP(E)
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Admissibility

Definition of the associated split fibration .% on lax squares

u(B')
|
|
|
() (B,p
QF(E) X up(e) U(B) —=22U(B)
LU(p’)
|
|
pri=7 (F)(B,p.E) v
UP(E") U(p)
QF(E) ————= UP(E)
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition of the associated split fibration .% on lax squares

u(B')
|
|
|
() (B,p
QF(E) X up(e) U(B) —=22U(B)
LU(p')
|
|
pri=7 (F)(B,p.E) v
F(E') 7~ 1 - —> UP(E") U(p)
QF(E) ————= UP(E)
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Definition of the associated split fibration .% on lax squares

|
|
|
32(”)(5 p,E)
pn=%(F)(B',p',E") QF(E) X UP(E) U(B) }ﬁ U(B)
LU(p’
|
|
prn=¥(F)(B,p,E) N
QF(E') -~ | -~ = UP(E') u(ep)

QF(E) ———— UP(E)

TE
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(Co)lax monads, lax algebras and associated (co)fibrations
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Definition of the associated split fibration .% on lax squares

F (') (g1 pt !
QF(E") x yp(eny U(B) —22U(B)
I

| u(b)
|
32(”)(5,;;,5)
pn=%(F)(B',p’,E") QF(E) X UP(E) U(B) }ﬁ U(B)
LU(p’
I
I
pn=¥(F)(B,p,E) Y
QF(E")~ 1 — — = UP(E) u(e)
\\ UP(e
N
QF(e) \\
QF(E) ————= UP(E)
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Definition of the associated split fibration .% on lax squares

j i !
QF(EI) XUP(E’) U B/ B i EL} Bl)

|

Z(F)(b,e) | w)
|
F ()

pn=%(F)(B',p’,E") QF(E) X UP(E) U( )}—7> U(B)

I
|
|
prn=¥(F)(B,p,E) N
QF(E')—- -1 - — = UP(E") U(p)
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

The associated split cofibration .%° 2-monad

1. The associated split cofibration .#° is defined as dual to .%:

F°(P) = (F(PP)*
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

The associated split cofibration .%° 2-monad

1. The associated split cofibration .#° is defined as dual to .%:
FO(P) = (F(P?))*

2. It requires no conditions on lax squares
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

The associated split cofibration .%° 2-monad

1. The associated split cofibration .#° is defined as dual to .%:
FO(P) = (F(P?))*

2. It requires no conditions on lax squares

3. It requires the existence of pushouts in base categories for
colax squares
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Pseudo-distributive law between fibrations and cofibrations

(%,(P, #))

A\

Igor Bakovi¢ September 10, 2024

(¢,(Q,%))

Ap

1//>\(U,W,F)

((#,P), 2)

N\

o

F(U,m,F)

= ((¢,Q),%)

(Co)Fibrations, (pseudo)distributive laws and (quasi)toposes



fHac

a Ve
) s
S
@ Q
i
i
Tl






(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

The component of a lax-natural transformation A

QF(E)

|
|
TI'E‘
I
|
‘ QF(E)
|
|
I
A
UP(E) U(q)me
N U(a)
A
U(B) g U(By)
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The component of a lax-natural transformation A

\
|
|
- !
UP(E) U(q)me

AN

N U(a)

A

U(B) s U(B,)
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The component of a lax-natural transformation A

|
|
|
pr1 ‘v
U(pr:
U(B x5, P(E))— £ 2% - UP(E) U(a)me
N U(a)
U(N A AN
Q
U(B) i U(BJ)
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The component of a lax-natural transformation A

U(B xg, P(E)) x uyp(e) QF(E) — =2 BF(E)

\

AU, =,F) |
g |

I

|

pri U(B) XU(Bq) QF(E)

pri
U(B xp, P(E))— + == = UP(E) U(q)me
AN

N U(a)
U(pr1) h N
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

The associated Beck-Chevalley fibration

@ The associated Beck-Chevalley fibrations are pseudoalgebras
for the pseudo-distributive law

N FF = FF
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

The associated Beck-Chevalley fibration

@ The associated Beck-Chevalley fibrations are pseudoalgebras
for the pseudo-distributive law

N FF° = F°F
@ A natural candidate for the domain of its underlying 2-functor
FF°: (€at, QT op) — (€ at, QT op)

is a double comma 2-category (% at, Q7 op) where QT op is a
2-category of quasitoposes and geometric morphisms
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The associated Beck-Chevalley fibration

@ The associated Beck-Chevalley fibrations are pseudoalgebras
for the pseudo-distributive law

N FF° = F°F
@ A natural candidate for the domain of its underlying 2-functor
FF°: (€at, QT op) — (€ at, QT op)

is a double comma 2-category (% at, Q7 op) where QT op is a
2-category of quasitoposes and geometric morphisms

@ A quasitopos is a finitely complete, finitely cocomplete, locally
cartesian closed category % in which there exists an object Q2
that classifies strong monomorphisms.
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Admissible 1-cells

Definition

Let (T,n,p): & — # be a lax idempotent 2-monad on the
2-category # . We say that the 1-cell f: C — D in % is
admissible if its image T(f) has a right adjoint us. In the dual
case of a colax idempotent 2-monad we say that the 1-cell

f: C— Din % is admissible if T(f) has a left adjoint v.
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Admissible objects

Definition

Let (T,n,p): & — & be a (co)lax idempotent 2-monad on the
2-category .# with a terminal object T. We say that an object E
of J is admissible if the unique 1-cell !g: E — T is admissible.
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition

Let (T,n,u): & — £ be a lax idempotent 2-monad on the
2-category #". We say that (T,n, 1) is admissible if the following
bicomma object condition holds:

1) the 2-category % has bicomma objects f | g of diagrams

B

C D

f

where 1-cells p and g are admissible.

2) the canonical 2-cell T(q)up = £ T(g) is a 2-isomorphism.
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(Co)lax monads, lax algebras and associated (co)fibrations
Admissibility

Definition

Let (T,n,p): & — X be a lax idempotent 2-monad on the
2-category .#". We say that (T, 7, u) is admissible if the following
bicomma object condition holds:

1) the 2-category .# has bicomma objects f | g of diagrams

flg—2 =B
q Vi g
C————D

where 1-cells p and g are admissible.

2) the canonical 2-cell T(q)up = £ T(g) is a 2-isomorphism.
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The admissibility of associated split (co)fibrations

Theorem
The associated split fibration 2-monad is admissible. J

The two triangle identities

w%Fﬁ’\

F(F, 8, U)F(F*, X\, L)F(F, B, U) === F (F, 3, U)

F(F.B,U)e

F(F*,\ L)

<,¢(F% \

F(F N DF(F B, U)F (F' N, L) e F(FU A L)

are represented by the following diagrams
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nu(B) U(B) L(n¢) L(C)
PSS ™
ULU(B) ————— U(B) LUL(C) ‘ L(C)
U(e,gjV “KGL(C)
L(q)
ULU(p)‘ nUP(E)/UP$E)§ Lu(p) LUL(q) L(no(m)/LQ‘(D)%
~ RS £ S
ULUP(E) W UP(E) LULQ(D) # LQ(D)
UL(BE)Y | Y
ULQF(E) :5,5 LU(Mp) EPF*(DL/PF*(D)\ AD
U(AJ;DE,)E)XF E | EE R,
(E) TS UP(E) LUPF*(D) — PF*(D)

L(BF+ D)) ¥ I
” >~ AFF*(D) ¥ ~ PF*(np) x>

QFF*F(E) ———— QF(E)  PF*FF*(D) ——— PF*(D)

QF (€e) P(er=(p
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Definition
A functor U: o/ — 2 is a local right adjoint if the restriction
Ua: (&, A) = (%, U(A))
of U to the slice (<7, A) category for each object A of <7 has a left
adjoint
La: (B,U(A)) — («, A).
Equivalently, each fiber Ua: (o7, A) — (A, U(A)) of the diagram

7?2 Y @2

cod i lcod

has a left adjoint.

- = = = -
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Theorem

fibration 2-monad.

Right multiadjoints are admissible objects for the associated split

m]

& =

DA
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