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Plan of the course
• Motivation
• Preliminaries

- Topos-theoretic background
- Toposes as ‘bridges’
- Functors inducing morphisms of toposes

• New foundations for relative topos theory
(j.w. with Riccardo Zanfa)

- Relative presheaf toposes
• Stacks and operations on them
• The fundamental adjunction
• The general presheaf-bundle adjunction
• Some applications

- Relative sheaf toposes

• Relative Diaconescu’s equivalence (j.w. with Léo Bartoli)
• Existential fibred sites and their associated toposes
• Towards relative geometric logic (j.w. with Raffaele Lamagna)
• Future directions
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Relativity techniques
• Broadly speaking, in Mathematics the relativization method

consists in trying to state notions and results in terms of
morphisms, rather than objects, of a given category, so that
they can be ‘relativized’ to an arbitrary base object.

• One works in the new, relative universe as it were the
‘classical’ one, and then interprets the obtained results from
the point of view of the original universe. This process is
usually called externalization.

• Relativity techniques can be thought as general ‘change of
base techniques’, allowing one to choose the universe
relatively to which one works according to one’s needs.

• The relativity method has been pionneered by Grothendieck,
in particular for schemes, in his categorical refoundation of
Algebraic Geometry, and has played a key role in his work.

• We aim for a similar set of tools for toposes, that is, for an
efficient formalism for doing topos theory over an arbitrary
base topos.
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Potential for applications

• The relativity method provides an extremely high degree of
technical flexibility, resulting from the possibility of
‘encapsulating’ part of the complexity of a situation in the
base topos, so that the given notions acquire a simpler (e.g.
a lower-degree) expression with respect to it.
• For example, a first-order theory becomes a propositional

one when regarded relative to a suitable base topos.
• Several mathematicians have already started using relativity

techniques for toposes:

- Scholze and Clausen’s condensed mathematics;

- Tao and Jamneshan’s topos-theoretic measure theory;

- Tomasic’s topos-theoretic difference algebra.

• It is therefore of fundamental importance to dispose of
effective tools for working with relative toposes which are as
general and flexible as possible, also from the computational
point of view.
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Topos theory over an arbitrary base topos

Our new foundations for relative topos theory are based on stacks
(and, more generally, fibrations and indexed categories).

The approach of category theorists (Lawvere, Diaconescu,
Johnstone, etc.) to this subject is chiefly based on the notions of
internal category and of internal site.

The problem with these notions is that they are too rigid to
naturally capture relative topos-theoretic phenomena, as well as
for making computations and formalizing ‘parametric reasoning’.

We have thus decided to resort to the more general and
technically flexible notion of stack, developing the point of view
originally introduced by J. Giraud in his paper Classifying topos.
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Grothendieck topologies
Definition
Given a category C and an object c ∈ Ob(C), a sieve S in C on c is
a collection of arrows in C with codomain c such that

f ∈ S ⇒ f ◦ g ∈ S

whenever this composition makes sense.

If S is a sieve on c and h : d → c is any arrow to c, then

h∗(S) := {g | cod(g) = d , h ◦ g ∈ S}

is a sieve on d .

Definition
A Grothendieck topology on a category C is a function J which
assigns to each object c of C a collection J(c) of sieves on c in
such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c} is
in J(c);

(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow
f : d → c;

(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such
that f ∗(R) ∈ J(d) for all f : d → c in S, then R ∈ J(c).

The sieves S which belong to J(c) for some object c of C are said
to be J-covering.
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Examples of Grothendieck topologies
• For any (small) category C, the trivial topology on C is the

Grothendieck topology in which the only sieve covering an
object c is the maximal sieve Mc .

• If X is a topological space, the usual notion of covering in
Topology gives rise to the following Grothendieck topology
JO(X) on the poset category O(X ): for a sieve
S = {Ui ↪→ U | i ∈ I} on U ∈ Ob(O(X )),

S ∈ JO(X)(U) if and only if ∪
i∈I

Ui = U .

• The Zariski topology on the opposite of the category Rngf.g. of
finitely generated commutative rings with unit is defined by: for
any cosieve S in Rngf.g. on an object A, S ∈ Z (A) if and only if
S contains a finite family {ξi : A→ Afi | 1 ≤ i ≤ n} of canonical
maps ξi : A→ Afi in Rngf.g. where {f1, . . . , fn} is a set of
elements of A which is not contained in any proper ideal of A.

• Given a (first-order geometric) theory T, one can naturally
associate a site (CT, JT) with it, called its syntactic site, which
embodies essential aspects of the syntax and proof theory of T.
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Sites and presheaves
Definition
• A site (resp. small site) is a pair (C, J) where C is a category

(resp. a small category) and J is a Grothendieck topology on C.
• A site (C, J) is said to be small-generated if C is locally small and

has a small J-dense subcategory.

Definition
• A presheaf on a (small) category C is a functor P : Cop → Set.
• Let P : Cop → Set be a presheaf on C and S be a sieve on an

object c of C.

A matching family for S of elements of P is a function which
assigns to each arrow f : d → c in S an element xf ∈ P(d) in
such a way that

P(g)(xf ) = xf◦g for all g : e→ d .

An amalgamation for such a family is a single element x ∈ P(c)
such that

P(f )(x) = xf for all f in S .
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Sheaves on a site
• Given a site (C, J), a presheaf on C is a J-sheaf if every

matching family for any J-covering sieve on any object of C
has a unique amalgamation.
• The J-sheaf condition can be expressed as the requirement

that for every J-covering sieve S the canonical arrow

P(c)→
∏
f∈S

P(dom(f ))

given by x → (P(f )(x) | f ∈ S) should be the equalizer of the
two arrows ∏

f∈S

P(dom(f ))→
∏

f,g, f ∈ S
cod(g)=dom(f )

P(dom(g))

given by (xf → (xf◦g)) and (xf → (P(g)(xf ))).

The category Sh(C, J) of sheaves on the site (C, J) is the full
subcategory of [Cop,Set] on the presheaves which are J-sheaves.
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The notion of Grothendieck topos

Definition
A Grothendieck topos is any category equivalent to the category
of sheaves on a site.
The following examples show that toposes can be naturally
attached to mathematical notions as different as (small)
categories, topological spaces, or groups:

Examples
• For any (small) category C, [Cop,Set] is the category of

sheaves Sh(C,T ) where T is the trivial topology on C.
• For any topological space X , Sh(O(X ), JO(X)) is equivalent to

the usual category Sh(X ) of sheaves on X .
• For any (topological) group G, the category BG = Cont(G) of

continuous actions of G on discrete sets is a Grothendieck
topos (equivalent to the category Sh(Contt(G), Jat) of
sheaves on the full subcategory Contt(G) on the non-empty
transitive actions with respect to the atomic topology).
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Basic properties of Grothendieck toposes
Grothendieck toposes satisfy all the categorical properties that one
might hope for:

Theorem
Let (C, J) be a (small-generated) site. Then
• the inclusion Sh(C, J) ↪→ [Cop,Set] has a left adjoint

a : [Cop,Set]→ Sh(C, J) (called the associated sheaf functor),
which preserves finite limits.
• The category Sh(C, J) has all (small) limits, which are preserved

by the inclusion functor Sh(C, J) ↪→ [Cop,Set]; in particular, limits
are computed pointwise and the terminal object 1Sh(C,J) of
Sh(C, J) is the functor T : Cop → Set sending each object
c ∈ Ob(C) to the singleton {∗}.
• The associated sheaf functor a : [Cop,Set]→ Sh(C, J) preserves

colimits; in particular, Sh(C, J) has all (small) colimits.
• The category Sh(C, J) has exponentials, which are constructed

as in the topos [Cop,Set].
• The category Sh(C, J) has a subobject classifier.
• The category Sh(C, J) has a separating set of objects (for

instance, the one provided by the objects of the form l(c) for
c ∈ C, where l is the canonical functor C → Sh(C, J)).
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Geometric morphisms

The natural, topologically motivated, notion of morphism of
Grothendieck toposes is that of geometric morphism:

Definition
(i) Let E and F be toposes. A geometric morphism f : E → F

consists of a pair of functors f∗ : E → F (the direct image of f )
and f ∗ : F → E (the inverse image of f ) together with an
adjunction f ∗ ⊣ f∗, such that f ∗ preserves finite limits.

(ii) Let f and g : E → F be geometric morphisms. A geometric
transformation α : f → g is defined to be a natural
transformation a : f ∗ → g∗.

(iii) A point of a topos E is a geometric morphism Set→ E .

Grothendieck toposes, geometric morphisms and geometric
transformations form a 2-category, called Topos.
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Examples of geometric morphisms
• A continuous function f : X → Y between topological spaces

gives rise to a geometric morphism Sh(f ) : Sh(X )→ Sh(Y ).
The direct image Sh(f )∗ sends a sheaf F ∈ Ob(Sh(X )) to the
sheaf Sh(f )∗(F ) defined by Sh(f )∗(F )(V ) = F (f−1(V )) for
any open subset V of Y . The inverse image Sh(f )∗ acts on
étale bundles over Y by sending an étale bundle p : E → Y
to the étale bundle over X obtained by pulling back p along
f : X → Y .

• Every Grothendieck topos E has a unique geometric
morphism E → Set. The direct image is the global sections
functor Γ : E → Set, sending an object e ∈ E to the set
HomE(1E ,e), while the inverse image functor ∆ : Set→ E
sends a set S to the coproduct

⊔
s∈S 1E .

• For any (small) site (C, J), the pair of functors formed by the
inclusion Sh(C, J) ↪→ [Cop,Set] and the associated sheaf
functor a : [Cop,Set]→ Sh(C, J) yields a geometric morphism
i : Sh(C, J)→ [Cop,Set].

13 / 77



Relative toposes
for the working
mathematician

Olivia Caramello

Motivation

Preliminaries
Topos-theoretic
background

Toposes as ‘bridges’

Functors inducing
morphisms of
toposes

Relative toposes
Operations on stacks

Relative ‘presheaf
toposes’

The fundamental
adjunction

Some applications

Relative sheaf
toposes

Relative
Diaconescu’s
equivalence

Fibred sites and
existential
toposes

Towards relative
geometric logic

Future directions

Presentations of toposes

The most classical way for building toposes is through sites
(indeed, a Grothendieck topos is, by definition, any category
equivalent to the category of sheaves on a small-generated site).

Still, toposes can also be canonically associated with groups (or
more generally topological or localic groupoids) or with (first-order
geometric) theories or with non-commutative structures such as
quantales or quantaloids, etc.

Every topos is associated with infinitely many presentations (in
particular, with infinitely many sites of definition), which may
belong to different areas of mathematics.

In this course we shall approach toposes from the geometric point
of view of their site presentations.
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Toposes as ‘bridges’

• One can exploit the duality between toposes and their
presentations to build ‘bridges’ across different mathematical
theories or contexts.

• More specifically, for any topos-theoretic invariant (i.e. notion
which is invariant under categorical equivalence of toposes),
one can try to construct ‘bridges’ by ‘computing’ it in terms of
different presentations of a given topos.

• Provided that such ‘unravelings’ are technically feasible, this
will result in correspondences between ‘concrete’ notions
pertaining to the different presentations.

• The effectiveness of the ‘bridge’ technique actually relies on
the natural structural relationship between a topos and its
presentations.
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Toposes as ‘bridges’

• These ‘bridges’ allow effective and often deep transfers of
notions, ideas and results across the theories.

• Note that toposes disappear in the end, though they have
been instrumental for performing the ‘translation’.

• In fact, ‘bridges’ have proved useful not only for connecting
different theories with each other, but also for working inside
a given mathematical theory and investigating it from a
multiplicity of points of view.

• The level of mathematical depth of a ‘bridge’ may vary
enormously from case to case, as it depends on the degree
of sophistication of the invariant inducing it, in particular in
relation to the given presentations, as well as on the
complexity of the given equivalence of toposes. Still, even
simple invariants applied to easy-to-establish equivalences
can lead to surprising, deep results.
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The ‘bridge’ technique
• Decks of ‘bridges’: Morita-equivalences (that is, equivalences

between different presentations of a given topos, or more
generally morphisms or other kinds of relations between
toposes)

• Arches of ‘bridges’: Characterizations for topos-theoretic
invariants in terms of different presentations of toposes

For example, this ‘bridge’ yields a logical equivalence between the
‘concrete’ properties P(C,J) and Q(D,K ), interpreted in this context as
manifestations of a unique property I lying at the topo level.
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Morphisms and comorphisms of sites
Geometric morphisms can be naturally induced by functors
between sites satisfying appropriate properties:

Definition
• A morphism of sites (C, J)→ (C, J ′) is a functor F : C → C′

such that there is a geometric morphism
u : Sh(C′, J ′)→ Sh(C, J) making the following square
commutative:

C F //

l
��

C′

l′

��
Sh(C, J) u∗

// Sh(C′, J ′);

• A comorphism of sites (D,K )→ (C, J) is a functor π : D → C
which has the covering-lifting property (in the sense that for
any d ∈ D and any J-covering sieve S on π(d) there is a
K -covering sieve R on d such that π(R) ⊆ S).

Theorem
• Every morphism of sites F : (C, J)→ (D,K ) induces a

geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J).
• Every comorphism of sites π : (D,K )→ (C, J) induces a

geometric morphism Cπ : Sh(D,K )→ Sh(C, J).
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Morphisms of sites

Theorem
Let (C, J) and (C′, J ′) be small-generated sites. Then, given a
functor F : C → C′, the following conditions are equivalent:

(i) F is a morphism of sites (C, J)→ (C′, J ′);

(ii) F satisfies the following properties:
(1) F sends every J-covering family in C into a J ′-covering family

in C′.

(2) Every object c′ of C′ admits a J ′-covering family

c′
i −→ c′ , i ∈ I ,

by objects c′
i of C′ which have morphisms

c′
i −→ F (ci)

to the images under F of objects ci of C.
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Morphisms of sites
(3) For any objects c1, c2 of C and any pair of morphisms of C′

f ′1 : c′ −→ F (c1) , f ′2 : c′ −→ F (c2) ,

there exists a J ′-covering family

g′
i : c′

i −→ c′ , i ∈ I ,

and a family of pairs of morphisms of C

f i
1 : bi −→ c1 , f i

2 : bi → c2 , i ∈ I ,

and of morphisms of C′

h′
i : c′

i −→ F (bi) , i ∈ I ,

making the following squares commutative:

c′
i

g′
i //

h′
i

��

c′

f ′1
��

F (bi)
F (f i

1) // F (c1)

c′
i

g′
i //

h′
i

��

c′

f ′2
��

F (bi)
F (f i

2) // F (c2)
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Morphisms of sites
(4) For any pair of arrows f1, f2 : c ⇒ d of C and any arrow of C′

f ′ : b′ −→ F (c)

satisfying
F (f1) ◦ f ′ = F (f2) ◦ f ′ ,

there exist a J ′-covering family

g′
i : b′

i −→ b′ , i ∈ I ,

and a family of morphisms of C

hi : bi −→ c , i ∈ I ,

satisfying
f1 ◦ hi = f2 ◦ hi , ∀ i ∈ I ,

and of morphisms of C′

h′
i : b′

i −→ F (bi) , i ∈ I ,

making commutative the following squares:

b′
i

g′
i //

h′
i

��

b′

f ′

��
F (bi)

F (hi ) // F (c)
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Kan extensions
The direct and image functors of geometric morphisms induced
by morphisms or comorphisms of sites can be naturally described
in terms of Kan extensions.

Recall that, given a functor f : C → D,
• the right Kan extension ranf op along f op, which is right adjoint

to the functor f ∗ : [Dop,Set]→ [Cop,Set], is given by the
following formula:

ranf op(F )(b) = lim←−
ϕ:fa→b

F (a),

where the limit is taken over the opposite of the comma
category (f ↓b).

• the left Kan extension lanf op along f op, which is left adjoint to
f ∗, is given by the following formula:

lanf op(F )(b) = lim−→
ϕ:b→fa

F (a),

where the colimit is taken over the opposite of the comma
category (b↓ f ).
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Geometric morphisms and Kan extensions
Proposition

(i) Let F : (C, J)→ (D,K ) be a morphism of small-generated sites.
Then

• the direct image Sh(F )∗ of the geometric morphism

Sh(F ) : Sh(D,K ) → Sh(C, J)

induced by F is given by the restriction to sheaves of F∗;
• the inverse image Sh(F )∗ of Sh(F ) is given by

aK ◦ lanFop ◦ iJ ,

where lanFop is the left Kan extension and iJ is the inclusion
Sh(C, J) ↪→ [Cop,Set].

(ii) Let F : (D,K )→ (C, J) be a comorphism of small-generated
sites. Then

• the direct image (CF )∗ of the geometric morphism

CF : Sh(D,K ) → Sh(C, J)

induced by F is given by the restriction to sheaves of the right
Kan extension ranFop ;

• the inverse image (CF )
∗ of CF is given by

aJ ◦ F∗ ◦ iK ,

where iK is the inclusion Sh(D,K ) ↪→ [Dop,Set].
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Unifying morphisms and comorphisms of sites

We shall unify the notions of morphism and comorphisms of sites
by interpreting them as two fundamentally different ways of
describing morphisms of toposes which correspond to each other
under a ‘bridge’.

More specifically, morphisms of sites provide an ‘algebraic’
perspective on morphisms of toposes, while comorphisms of sites
provide a ‘geometric’ perspective on them.

The key idea is to replace the given sites of definition with
Morita-equivalent ones in such a way that the given morphism
(resp. comorphism) of sites acquires a left (resp. right) adjoint,
not necessarily in the classical categorial sense but in the weaker
topos-theoretic sense of the associated comma categories having
equivalent associated toposes.
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From morphisms to comorphisms of sites

Theorem (O.C.)
Given a morphism F : (C, J)→ (D,K ) of small-generated sites,
let

- (1D ↓ F ) be the ‘comma category’ whose objects are the
triplets (d , c, α : d → F (c))

- iF be the functor C → (1D ↓ F ) sending any object c of C to
the triplet (F (c), c,1F (c)),

- πC : (1D ↓ F )→ C and πD : (1D ↓ F )→ D the canonical
projection functors, and

- K̃ be the Grothendieck topology on (1D ↓ F ) whose covering
sieves are those whose image under πD is K -covering.

Then:
(i) πC ⊣ iF , πD ◦ iF = F, iF is a morphism of sites

(C, J)→ ((1D ↓ F ), K̃ ) and cF := πC is a comorphism of sites
((1D ↓ F ), K̃ )→ (C, J).

25 / 77



Relative toposes
for the working
mathematician

Olivia Caramello

Motivation

Preliminaries
Topos-theoretic
background

Toposes as ‘bridges’

Functors inducing
morphisms of
toposes

Relative toposes
Operations on stacks

Relative ‘presheaf
toposes’

The fundamental
adjunction

Some applications

Relative sheaf
toposes

Relative
Diaconescu’s
equivalence

Fibred sites and
existential
toposes

Towards relative
geometric logic

Future directions

From morphisms to comorphisms of sites
(ii) πD : ((1D ↓ F ), K̃ )→ (D,K ) is both a morphism of sites and a

comorphism of sites inducing equivalences

CπD : Sh((1D ↓ F ), K̃ )→ Sh(D,K )

and
Sh(πD) : Sh(D,K )→ Sh((1D ↓ F ), K̃ )

which are quasi-inverse to each other and make the following
triangle commute:

Sh((1D ↓ F ), K̃ ) Sh(D,K )

Sh(C, J)

CπD

∼

CπC
∼=Sh(iF )

Sh(πD)

Sh(F )

For any geometric morphism f : F → E , f ∗ is a morphism of sites
(E , Jcan

E )→ (F , Jcan
F ) such that f = Sh(f ∗). We thus obtain the

following

Corollary (O.C.)
Let f : F → E be a geometric morphism. Then the canonical
projection functor

πE : (1F ↓ f ∗)→ E

is a comorphism of sites ((1F ↓ f ∗), J̃can
F )→ (E , Jcan

E ) such that
f = CπE .
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The canonical stack of a geometric morphism

The functor πE : (1F ↓ f ∗)→ E is actually a stack on E , which we
call the canonical stack of f : from an indexed point of view, this
stack sends any object E of E to the topos F/f ∗(E) and any arrow
u : E ′ → E to the pullback functor u∗ : F/f ∗(E)→ F/f ∗(E ′).
We shall call the Grothendieck topology J̃can

F on (1F ↓ f ∗) the
relative topology of f and denote it by Jf .

By taking f to be the identity, and choosing a site of definition
(C, J) for E , we obtain the canonical stack S(C,J) on (C, J), which
sends any object c of C to the topos Sh(C, J)/l(c). The above
corollary thus specializes to an equivalence

Sh(C, J) ≃ Sh(S(C,J), J̃can
Sh(C,J)),

which represents a ‘thickening’ of the usual representation of a
Grothendieck topos as the topos of sheaves over itself with
respect to the canonical topology.
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From comorphisms to morphisms of sites

With a comorphism of sites F : (D,K )→ (C, J) we can associate
the morphism of sites

mF : (C, J)→ (D̂, K̂ )

sending an object c of C to the presheaf HomC(F (−), c), where K̂
is the extension of the Grothendieck topology K along the Yoneda
embedding yD : D → D̂.

This morphism of sites induces a geometric morphism Sh(mF )
making the following triangle commute:

Sh(D̂, K̂ ) Sh(D,K )

Sh(C, J)

Sh(yD)

∼

Sh(mF )

CyD
CF
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Bridging morphisms and comorphisms of sites
We shall call a functor which both a morphism and a comorphism of
sites a bimorphism of sites.

We have actually shown that the relationship between a morphism F
(resp. comorphism G) of sites and the associated comorphism cF
(resp. morphism mF ) of sites is captured by the equivalence

Sh((1D ↓ F ), K̃ ) ≃ Sh((cF ↓ 1D), K̃ )

(resp.

Sh((G ↓ 1C),K ) ≃ Sh((1D̂ ↓ mG),
˜̂K ))

of toposes over Sh(C, J) induced by bimorphism of sites wF (resp.
zG) over C.

In fact, F and cF (resp. G and mG) are not adjoint to each other in a
concrete sense (that is, at the level of sites); nonetheless, they
become ‘abstractly’ adjoint in the world of toposes since toposes
naturally attached to such categories are equivalent.

These correspondences actually yield a dual adjunction between a
category of morphisms of sites from a given site and a category of
comorphisms of sites towards that site.
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Continuous functors

Another important class of functors between sites is that of
continuous ones:

Definition (Grothendieck)
Given sites (C, J) and (D,K ), a functor A : C → D is said to be
(J,K )-continuous, or simply, continuous, if the functor

DA := (− ◦ Aop) : [Dop,Set]→ [Cop,Set]

restricts to a functor Sh(D,K )→ Sh(C, J).

The property of continuity of a functor can be interpreted as a
form of cofinality; in fact, we have shown that it can be explicitly
characterized in terms of “relative cofinality conditions”
(introduced in the paper Denseness conditions, morphisms and
equivalences of toposes).
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Classifying essential morphisms
Recall that a geometric morphism f : F → E is said to be essential
if its inverse image f ∗ has a left adjoint, denoted by f! and called its
essential image.

Theorem
Let (C, J) be a small-generated site, E a Grothendieck topos. Let
Geomess(Sh(C, J), E) be the category of essential geometric
morphisms, and Comcont((C, J), (E , Jcan

E )) the category of
J-continuous comorphisms of sites (C, J)→ (E , Jcan

E ). Then we
have an equivalence

Geomess(Sh(C, J), E) ≃ Comcont((C, J), (E , Jcan
E ))

sending an essential geometric morphism f = (f! ⊣ f ∗ ⊣ f∗) to the
comorphism of sites f! ◦ l and a J-continuous comorphism of sites A
to the geometric morphism CA induced by it.

Remark
We have shown that if π is a fibration then Cπ is not only essential,
but even locally connected.
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Fibrations as comorphisms of sites
Recall that, given a functor A : C → D and a Grothendieck topology
K in D, there is a smallest Grothendieck topology MA

K on C which
makes A a comorphism of sites to (D,K ).

Proposition
If A is a fibration, the topology MA

K admits the following simple
description: a sieve R is MA

K -covering if and only if the collection of
cartesian arrows in R is sent by A to a K -covering family.

We shall call MA
K the Giraud topology induced by K , in honour of

Jean Giraud, who used it for constructing the classifying topos
Sh(C,MA

K ) of a stack A on (D,K ).

Proposition
For any Grothendieck topology K on D, every morphism of
fibrations (A : C → D)→ (A′ : C′ → D) yields a continuous
comorphism of sites (C,MA

K )→ (C′,MA′

K ).

In particular, a fibration A : C → D yields a continuous comorphism
of sites (C,MA

K )→ (D,K ) for any Grothendieck topology K on D.
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Giraud topologies

The study of the Giraud topology can provide insights on the
given fibration. As a basic example of this, under the assumption
that J is subcanonical, the property of being a prestack can be
checked directly by analysing the Giraud topology:

Proposition (O.C. and R.Z.)
Consider a subcanonical site (C, J) and a cloven fibration
p : D → C: then p is a prestack if and only if the Giraud topology
Mp

J is subcanonical.

We actually have a Giraud topology functor

G : Cat/C → Com/(C, J),

mapping [p : E → C] to p : (E ,Mp
J )→ (C, J).

By the above results, this functor actually takes values in the
subcategory of continuous comorphisms of sites.
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Indexed categories and fibrations
The language in which we shall work for developing relative topos
theory is that of indexed categories and fibrations.
• Given a category C, we shall denote by IndC the 2-category of
C-indexed categories: it is the 2-category [Cop,Cat]ps whose
0-cells are the pseudofunctors Cop → Cat, whose 1-cells are
the pseudonatural transformations and whose 2-cells are the
modifications between them.

• Given a category C, we shall denote by FibC the 2-category of
fibrations over C: it is the sub-2-category of CAT/C whose
0-cells are the (Street) fibrations p : D → C, whose 1-cells are
the morphisms of fibrations (with a ‘commuting’ isomorphism)
and whose 2-cells are the natural transformations between
them.
We shall denote by cFibC the full sub-2-category of cloven
fibrations (i.e. fibrations equipped with a cleavage).

It is well-known that indexed categories and fibrations are in
equivalence with each other:

Theorem
For any category C, there is an equivalence of 2-categories
between IndC and cFibC , one half of which is given by the
Grothendieck construction and whose other half is given by the
functor taking the fibers at the objects of C.
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The notion of stack
Definition
Consider a site (C, J) and a fibration p : D → C: then p is a
J-prestack (resp. J-stack) if for every J-sieve mS : S ↣ yC(X ) the
functor

− ◦
∫

mS : FibC(C/X ,D)→ FibC(
∫

S,D)

is full and faithful (resp. an equivalence).
Stacks over a site (C, J) form a 2-full and faithful subcategory of
IndC , which we will denote by St(C, J).

The notion of stack on a site is a higher-categorical generalization
of that of sheaf on that site:

Proposition
Consider a site (C, J) and a presheaf P : Cop → Set: then P is
J-separated (resp. J-sheaf) if and only if the fibration

∫
P → C is a

J-prestack (resp. J-stack).
We can rewrite the condition for a pseudofunctor Cop → Cat to be a
J-prestack (resp. J-stack) in the language of indexed categories, as
the requirement that for every sieve mS : S ↣ yC(X ) the functor

IndC(yC(X ),D) −◦mS−−−→ IndC(S,D)

be full and faithful (resp. an equivalence), where both yC(X ) and S
are interpreted as discrete C-indexed categories.
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Stacks for relative topos theory
The role of stacks in our approach to relative topos theory is
two-fold:
• On the one hand, the notion of stack represents a higher-order

categorical generalization of the notion of sheaf. Accordingly,
categories of stacks on a site represent higher-categorical
analogues of Grothendieck toposes. One can thus expect to
be able to lift a number of notions and constructions pertaining
to sheaves (resp. Grothendieck toposes) to stacks (resp.
categories of stacks on a site).

• On the other hand, stacks on a site (C, J) generalize internal
categories in the topos Sh(C, J). Since (ordinary) categories
can be endowed with Grothendieck topologies, so stacks on a
site can also be endowed with suitable analogues of
Grothendieck topologies. This leads to the notion of site
relative to a base topos, which is crucial for developing relative
topos theory.

Remark
Every stack is equivalent to a split stack, and hence to an internal
category, but most stacks naturally arising in the mathematical
practice are not split (think, for instance, of the canonical stack of a
topos).
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The big picture
Our theory is based on a network of 2-adjunctions (for any small
site (C, J)):

IndC Topos/Sh(C, J)co

St(C, J) EssTopos/Sh(C, J)co

Sh(C, J)

sJ

Λ

⊥
Γ

⊢

E◦Λ′

Λ′

⊥

L

Γ′

⊢ E⊣

In this diagram sJ denotes the stackification functor, Topos the
category of Grothendieck toposes and geometric morphisms and
EssTopos the full subcategory on the essential geometric
morphisms.

• The functor E sends an essential geometric morphism
f : E → Sh(C, J) to the object f!(1E ) (where f! is the left adjoint
to the inverse image f ∗ of f ).
• The functor L sends an object P of Sh(C, J) to the canonical

local homeomorphism Sh(C, J)/P → Sh(C, J).
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Pseudo-Kan extensions
Proposition
Denote by Inds

C the sub-2-category of IndC of pseudofunctors with
values in Cat (i.e. ‘small’ C-indexed categories). Consider any
functor F : C → D and the direct image 2-functor

F ∗ : Inds
D → Inds

C

which acts by precomposition with F op. The 2-functor F ∗ has both
a left and a right 2-adjoint, denoted respectively by LanF op and
RanF op , which act as follows:
• for any D in D denote by πD

F : (D ↓F )→ C the canonical
projection functor: then for E : Cop → Cat, its image
LanF op(E) : Dop → Cat is defined componentwise as

LanF op(E)(D) := colimps

(
(D ↓F )op (πD

F )
op

−−−−→ Cop E−→ Cat
)

• for any D in D denote by π′D
F : (F ↓D)→ C the canonical

projection functor: then for E : Cop → Cat, its image
RanF op(E) : Dop → Cat is defined componentwise as

RanF op(E)(D) := limps

(
(F ↓D)op (π′D

F )op

−−−−→ Cop E−→ Cat
)
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Direct and inverse images of stacks

Proposition (O.C. and R.Z.)
Consider two sites (C, J) and (D,K ) and a functor F : C → D.
• Then F is (J,K )-continuous functor if and only if

F ∗ : IndD → IndC restricts to a 2-functor St(D,K )→ St(C, J).
• If F is a morphism of sites F : (C, J)→ (D,K ), or more

generally a (J,K )-continuous functor, it induces a 2-adjunction

Sts(C, J) Sts(D,K )

St(F )∗

St(F )∗
⊣

,

whose pair we shall refer to simply by St(F ).
• The 2-functor St(F )∗ is called the direct image of stacks along

F and acts as the precomposition

F ∗ := (− ◦ F op) : IndD → IndC ;

In terms of fibrations, a stack q : E → D is mapped by St(F )∗
to its strict pseudopullback p : P → C along F.
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Direct and inverse images of stacks
• The left adjoint St(F )∗ is the inverse image of stacks along F

and acts as the composite

Sts(C, J) iJ−→ Inds
C

LanFop−−−−→ Inds
D

sK−→ Sts(D,K ),

where sK denotes the stackification functor. In terms of
fibrations, a stack p : P → C is mapped by St(F )∗ to the
stackification of its inverse image LanF op([p]) along F , which
can be computed as a localization as follows. Consider the
fibration of generalized elements

(1D ↓(F ◦ p)) r−→ D

of the functor F ◦ p, whose objects are arrows
[d : D → (F ◦ p)(U)] of D, and whose morphisms

(e, α) : [d ′ : D′ → (F ◦ p)(V )]→ [d : D → (F ◦ p)(U)]

are indexed by an arrow e : D′ → D in D and an arrow
α : V → U in P such that (F ◦ p)(α) ◦ d ′ = d ◦ e. Consider the
class of arrows

S := {(e, α) : [d ′]→ [d ] | (e, α) r -vertical, α cartesian in P} :

then
LanF op([p]) ≃ (1D ↓(F ◦ p))[S−1] .
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Direct and inverse images of stacks
In a similar way to morphisms of sites, comorphisms of sites also
induce an adjunction between categories of stacks:

Proposition (O.C. and R.Z.)
Consider a comorphism of sites F : (C, J)→ (D,K ): it induces a
2-adjunction

Sts(D,K ) Sts(C, J)

(CSt
F )∗

(CSt
F )∗

⊣

,

whose pair we shall refer to by CSt
F .

• The right adjoint (CSt
F )∗ acts by restriction of the right

pseudo-Kan extension RanF op to stacks;
• The left adjoint (CSt

F )∗ acts as the composite 2-functor

Sts(D,K )
iK−→ Inds

D
F∗

−−→ Inds
C

sJ−→ Sts(C, J),

where F ∗ := (− ◦ F op).
• If F is also continuous the CSt

F also has a left adjoint (CSt
F )! given

by the composite 2-functor

Sts(C, J) iJ−→ Inds
C

LanFop−−−−→ Inds
D

sK−→ Sts(D,K ) .
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Relative ‘presheaf toposes’

Given a C-indexed category D, we denote by G(D) the fibration on
C associated with it (through the Grothendieck construction) and
by pD the canonical projection functor G(D)→ C.

Proposition (O.C. and R.Z.)
Let (C, J) be a small-generated site, D a C-indexed category and
DV be the opposite indexed category of D (defined by setting, for
each c ∈ C, DV (c) = D(c)op). Then we have a natural equivalence

Sh(G(D),MpD
J ) ≃ IndC(DV ,S(C,J)) .

This proposition shows that the topos Sh(G(D),MpD
J ) of D, which

we call the Giraud topos of D, can indeed be seen as the “topos
of relative presheaves on D”.
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Giraud toposes as weighted colimits

We have shown that, for any D, the Giraud topos
CpD : Sh(G(D),MpD

J )→ Sh(C, J) can be naturally seen as a
weighted colimit of a diagram of étale toposes over Sh(C, J):

Sh(C/X , JX ) Sh(C/Y , JX )

Sh(G(D),MpD
J )

λ(X,V ) λ(X,U)

CΣy

λ(Y ,(D(y)(U)))

λ(X,a)

∼=

where y : Y → X and a : U → V are arrows respectively in C and
in D(X ), the legs λ(X ,U) : Sh(C/X , JX )→ Sh(G(D),MpD

J ) of the
cocone are the morphisms Cξ(X,U)

induced by the morphisms of
fibrations ξ(X ,U) : C/X → D over C given by the fibered Yoneda
lemma, and the functor Σy : C/Y → C/X are given by composition
with y .
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The fundamental adjunction

A fundamental result in the theory of sheaves is the classical
adjunction

Psh(X ) Top/X

Λ

⊣

Γ

.

between presheaves on a topological space X and bundles over it
(i.e. continuous maps with codomain X ).

How to possibly generalize this adjunction to the setting of
arbitrary sites has been an open problem for many years.

With Riccardo Zanfa, we have managed to establish such a
generalization, not only for presheaves, but for arbitrary indexed
categories. This result has several applications to the theory of
sheaves and stacks.
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The fundamental adjunction
For any small-generated site (C, J), there is a 2-adjunction between
cloven fibrations over C and toposes over Sh(C, J) (which in fact
precisely expresses the universal property of the above weighted
colimit):

Theorem (O.C and R.Z.)
For any small-generated site (C, J), the two pseudofunctors

ΛToposco/Sh(C,J) : cFibC −→ Toposco/Sh(C, J),[
[p : D → C] (F ,ϕ)−−−→ [q : E → C]

]
7→

[
[GirJ(p)]

(CF ,Cϕ)−−−−−→ [GirJ(q)]
]
,

and

ΓToposco/Sh(C,J) : Toposco/Sh(C, J)→ IndC ≃ cFibC ,

[E : E → Sh(C, J)] 7→
[
Toposco/Sh(C, J)(Sh(C/−, J(−)), [E ]) : Cop → CAT

]
are the two components of a 2-adjunction

cFibC Toposco/Sh(C, J)

ΛToposco/Sh(C,J)

⊢

ΓToposco/Sh(C,J)

Remark
Since GirJ(p) ≃ IndC(DV ,S(C,J)), the canonical stack S(C,J) has a
similar behavior to that of a dualizing object for the adjunction Λ ⊣ Γ.
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The discrete setting

Proposition (O.C. and R.Z.)
Consider a small-generated site (C, J):
• There is an adjunction of 1-categories

[Cop,Set] Toposs/1Sh(C, J)

ΛToposs/1Sh(C,J)

ΓToposs/1Sh(C,J)

⊣

.

- The functor ΛToposs/1Sh(C,J) maps a presheaf P to∏
aJ (P) : Sh(C, J)/aJ(P) → Sh(C, J) or, in terms of comorphisms

of sites, to Λ(P) := [CpP : Sh(
∫

P, JP) → Sh(C, J)] and
Λ(g) := C∫

g : Sh(
∫

P, JP) → Sh(
∫

Q, JQ).

- The functor ΓToposs/1Sh(C,J) acts like a Hom-functor by mapping
an object [F : F → Sh(C, J)] of Toposs/1Sh(C, J) to the
presheaf

Toposs/1Sh(C, J)(Sh(C, J)/ℓJ(−),F ) : Cop → Set .
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The general presheaf-étale adjunction

• The image of ΛToposs/1Sh(C,J) factors through
Toposétale/Sh(C, J), and the image of ΓToposs/1Sh(C,J) factors
through Sh(C, J);

• The fixed points of Toposs/1Sh(C, J) are precisely the étale
geometric morphisms, while those of [Cop,Set] are the
J-sheaves.

• The adjunction ΛToposs/1Sh(C,J) ⊣ ΓToposs/1Sh(C,J) restricts to an
equivalence

Sh(C, J) ≃ Toposétale/1Sh(C, J) .

• The composite functor ΓToposs/1Sh(C,J)ΛToposs/1Sh(C,J) is
naturally isomorphic to the sheafification functor

iJaJ : [Cop,Set]→ Sh(C, J)→ [Cop,Set];
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Some applications

The presheaf-bundle adjunction for topological spaces is useful
mostly becase it provides a geometric interpretation of several
fundamental constructions on (pre)sheaves, such as direct and
inverse images, as well as the sheafification process, in the
language of fibrations.

Thanks to our site-theoretic generalization, we can extend these
techniques to arbitrary presheaves. In particular, we obtain the
following results:
• For any c ∈ C, the elements aJ(P)(c) of the J-sheafification

of a given presheaf P can be identified with the geometric
morphisms over Sh(C, J) from Sh(C/c, Jc) to Sh(

∫
P, JP), all

of which can be locally represented as being induced by
morphisms of fibrations.

This is strictly related to the construction of aJ(P)(c) in terms
of locally matching families of elements of P.
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Direct and inverse images of sheaves in terms of fibrations

• Given a functor F : C → D and two presheaves P : Cop → Set
and Q : Dop → Set with associated fibrations πP :

∫
P → C

and πQ :
∫

Q → D,
- the fibration corresponding to the direct image presheaf

Q ◦ F op is computed as the strict pullback of πQ along F :∫
(F∗(Q))

∫
Q

C D

πQ

F

⌟

- If F is a morphism of sites (C, J) → (D,K ) then, for any
J-sheaf P on C, the inverse image Sh(F )∗(P) coincides with
the discrete part of the K -comprehensive factorization of the
composite functor F ◦ πP .

We have also established natural analogues of these results in
the context of stacks.
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Applications to pullbacks of toposes
Given a continuous function f : X → Y between topological spaces,
the inverse image Sh(f )∗ of the geometric morphism

Sh(f ) : Sh(X )→ Sh(Y )

induced by f corresponds under the equivalences

Sh(X ) ≃ Etale/X

and
Sh(Y ) ≃ Etale/Y

to the pullback operation along f in the category Top of topological
spaces.
The following result represents the topos-theoretic analogue of this
result (note how geometric morphisms play the role of continuous
maps):

Proposition (O.C. and R.Z.)
Let F : (C, J)→ (D,K ) be a morphism of sites and D a small
J-stack: then the square

GirK (St(F )∗(D)) GirJ(D)

Sh(D,K ) Sh(C, J)

Cp(St(F )∗(D)) CpD

Sh(F )

is a pullback of toposes.
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Applications to pullbacks of toposes
As shown by the following proposition, in the case of geometric
morphism induced by a continuous comorphism of sites, it is
possible to compute the following pullback of toposes very simply
already at the site level:

Proposition (O.C. and R.Z.)
If F is a continuous comorphism of sites (C, J)→ (D,K ) then, for
any small K -stack D on D, the diagram

G((CSt
F )∗(D)) G(D)

C D

p
(CSt

F )∗(D) pD

F

is a pseudopullback in Cat, which is sent by the 2-functor C to a
pullback in Topos:

GirJ((CSt
F )∗(D)) GirK (D)

Sh(C, J) Sh(D,K )

Cp
(CSt

F )∗(D) CpD

CF
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Relative sheaf toposes
As any Grothendieck topos is a subtopos of a presheaf topos, so
any relative topos should be a subtopos of a relative presheaf
topos. This motivates the following

Definition
Let (C, J) be a small-generated site. A site relative to (C, J) is a
pair consisting of a C-indexed category D and a Grothendieck
topology K on G(D) which contains the Giraud topology MpD

J .

The topos of sheaves on such a relative site (D,K ) is defined to
be the geometric morphism

CpD : Sh(G(D),K )→ Sh(C, J)

induced by the comorphism of sites pD : (G(D),K )→ (C, J).

Remark
Not every Grothendieck topology on K can be generated starting
by horizontal or vertical data (that is, by sieves generated by
cartesian arrows or entirely lying in some fiber), but many
important relative topologies naturally arising in practice are of
this form.
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Examples of relative topologies

• The relative topology on the canonical stack of a geometric
morphism (which allows one to represent any relative topos
as the topos of sheaves on a relative site).

• The Giraud topology is an example of a relative topology
generated by horizontal data.

• The total topology of a fibered site, in the sense of
Grothendieck, is generated by vertical data.

We have shown that, for a wide class of relative topologies
generated by horizontal and vertical data, one can describe
bases for them consisting of multicompositions of horizontal
families with vertical families.
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From the ordinary to the relative setting

ABSOLUTE RELATIVE
Topos E Relative topos : f : F → E

Geometric morphism Relative geometric morphism
g : E → E ′ g : [f ]→ [f ′]

Categories and functors Fibrations and their morphisms
Site (D,K ) Relative site pD : (G(D),K )→ (C, J)

Morphism of sites Morphism of relative sites
Presheaf toposes Giraud toposes

Sheaf toposes Toposes of sheaves on a relative site
Canonical site (E , JE

can) Canonical relative site ((1 ↓ f ∗), Jf )
Canonical functor Canonical morphism

l : (D,K )→ Sh(D,K ) ηD : (D,K )→ (Sh(D,K ) ↓ C∗
p )
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Relative Diaconescu’s equivalence
A fundamental result in topos theory is Diaconescu’s theorem,
providing an equivalence between geometric morphisms to a sheaf
topos Sh(D,K ) and K -continuous flat functors on D.

The following result represents its generalisation in the setting of
relative toposes:

Theorem (L.B. and O.C.)
Let f : F → Sh(C, J) be a Sh(C, J)-topos and D a C-indexed
category. Then we have an equivalence

GeomSh(C,J)([f ], [CpD ]) ≃ FlatSh(C,J)(G(D), (1F ↓ f ∗lJ))

between the category of geometric morphisms, relative to Sh(C, J),
from f to CpD , and the category of flat relative to Sh(C, J) functors
from G(D) to (1F ↓ f ∗lJ).
If K is a Grothendieck topology on G(D) containing the Giraud
topology JD then the above equivalence restricts to an equivalence

GeomSh(C,J)([f ], [CpK
D
]) ≃ FlatK

Sh(C,J)(G(D), (1F ↓ f ∗lJ)),

where FlatK
Sh(C,J)(G(D), (1F ↓ f ∗lJ)) is the full subcategory of the

category FlatSh(C,J)(G(D), (1F ↓ f ∗lJ)) on the K -continuous
functors.
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Morphisms of relative sites

As in the ordinary setting, (relative) flat functors can be
characterized in terms of (relative) morphisms of sites.

Definition (L.B. and O.C.)
Let (C, J) be a small-generated site, D,D two C-indexed
categories and K ,K ′ Grothendieck topologies respectively on
G(D) and G(D′) which contain the Giraud topologies induced by J.
A morphism of relative sites (G(D),K )→ (G(D′),K ′) over (C, J) is
a morphism of fibrations over C which is moreover a morphism of
ordinary sites (G(D),K )→ (G(D′),K ′).

Proposition (L.B. and O.C.)
Let f : F → Sh(C, J) be a Sh(C, J)-topos and D a C-indexed
category. Then a functor G(D)→ (1F ↓ f ∗lJ) is flat and
K -continuous relative to the topos Sh(C, J) if and only if it yields a
morphism of relative sites (G(D),K )→ ((1F ↓ f ∗lJ), Jf ).

56 / 77



Relative toposes
for the working
mathematician

Olivia Caramello

Motivation

Preliminaries
Topos-theoretic
background

Toposes as ‘bridges’

Functors inducing
morphisms of
toposes

Relative toposes
Operations on stacks

Relative ‘presheaf
toposes’

The fundamental
adjunction

Some applications

Relative sheaf
toposes

Relative
Diaconescu’s
equivalence

Fibred sites and
existential
toposes

Towards relative
geometric logic

Future directions

Fibred sites

The following slides will be devoted to presenting a way for
representing relative toposes which naturally generalizes the
construction of the topos of sheaves on a locale, and which is
particularly effective for describing in a simple way the morphisms
between relative toposes.

Recall that, given locales L and L′, the morphisms
Sh(L)→ Sh(L′) correspond exactly to the locale homomorphisms
L→ L′.

Our representation will be based on the concept of existential
fibred site.

By using this notion, we shall be able to describe the morphisms
between two relative toposes as morphisms between the
associated existential fibred sites.

57 / 77



Relative toposes
for the working
mathematician

Olivia Caramello

Motivation

Preliminaries
Topos-theoretic
background

Toposes as ‘bridges’

Functors inducing
morphisms of
toposes

Relative toposes
Operations on stacks

Relative ‘presheaf
toposes’

The fundamental
adjunction

Some applications

Relative sheaf
toposes

Relative
Diaconescu’s
equivalence

Fibred sites and
existential
toposes

Towards relative
geometric logic

Future directions

Two corollaries of relative Diaconescu
Corollary
Let f : F → E and f ′ : F ′ → E be geometric morphisms towards
the same base topos E . Then we have an equivalence of
categories

GeomE([f ], [f ′]) ≃ Fibcart,cov
E (((1F ′ ↓ f ′∗), Jf ′), ((1F ↓ f ∗), Jf )),

where Fibcart,cov
E (((1F ′ ↓ f ′∗), Jf ′), ((1F ↓ f ∗), Jf )) is the category of

morphisms of fibrations over E which are cartesian at each fiber
and cover-preserving.

Corollary
Let E be a Grothendieck topos and L, L′ internal locales in E .
Then we have an equivalence of categories

GeomE(ShE(L),ShE(L′)) ≃ LocE(L,L′),

where LocE(L,L′) is the category of morphisms of internal locales
from L to L′ in E .
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Fibred sites
Definition
Let (C, J) be a small-generated site.

(a) A fibred site over C is an indexed category L : Cop → Cat
taking values in the category of small-generated sites and
morphisms of sites between them; we shall denote by JL

e the
Grothendieck topology on the fiber L(e).

(b) A fibred site over (C, J) is a fibred site over C which is
J-reflecting in the sense that for any J-covering family S on
an object c of C and any family T of arrows with common
codomain in the category L(c), if L(f )(T ) is JL

dom(f )-covering in
the category L(dom(f )) for every f ∈ S then T is JL

c -covering.

(c) A J-reflecting fibred site L : Cop → Cat over (C, J) is said to be
existential if for any arrow a : E ′ → E in C, the transition
functor L(a) : L(E)→ L(E ′) has a cover-preserving left
adjoint, denoted ∃a : L(E ′)→ L(E) (which is therefore a
comorphism of sites (L(E ′), JL

E ′)→ (L(E), JL
E)), and the

following two conditions (where, for any f , ηf denotes the unit
of the adjunction ∃f ⊣ L(f )) are satisfied:
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Existential fibred sites
(i) Relative Beck-Chevalley condition:

For any arrows c : V → Z and d : W → Z in C with common
codomain and any l ∈ L(V ), the family of arrows

{ ˜L(a)(ηc(l)) : (∃b)(L(a)(l))→ L(d)(∃c(l)) | (a,b) ∈ B(c,d)}

is JL
W -covering, where B(c,d) is the collection of spans

(a : U → V ,b : U →W ) such that c ◦ a = d ◦ b

U V

W Z

c

d

a

b

and ˜L(a)(ηc(l)) is the transpose of the arrow

˜L(a)(ηc(l)) : L(a)(l)→ L(b)(L(d)(∃c(l)))

given by the composite of the arrow L(a)(ηc(l)) with the inverse
of the isomorphism L(b)(L(d)(∃c(l)))→ L(a)(L(c)(∃c(l)))
resulting from the equality c ◦ a = d ◦ b in light of the
pseudofonctoriality of L.
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Existential fibred sites
(ii) Relative Frobenius condition: For any arrows f : E → E ′ in C,

any l ∈ L(E ′) and any arrow α : l ′ → ∃f (l), the family of
arrows {δ : ∃f (m)→ l ′ | (δ, ρ) ∈ Q(f ,α)} is JL

E′ -covering, where
Q(f ,α) is the collection of span of arrows
(ρ : m→ l , δ : m→ L(f )(l ′)) in L(E) which make the rectangle

m l

L(f )(l ′) L(f )(∃f (l))

ηf (l)

ρ

δ

L(f )(α)

commute.

Remark
One can generalize the notion of fibred site by simply requiring
the transition morphisms to be cover-preserving (rather than
morphisms of sites). The theorem below about the existential
topology (see below) remains valid, but the results below on fibers
of existential toposes require the stronger assumptions.
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The fibred site of a geometric morphism

Definition
Let f : F → E be a geometric morphism. The existential fibred site
of f is the indexed functor Lf : Eop → Cat sending any object E of
E to the topos F/f ∗(E) endowed with its canonical topology (for
any arrow k : E ′ → E in E , the pullback functor

Lf (k) := (f ∗(k))∗ : F/f ∗(E)→ F/f ∗(E ′)

has a left adjoint

∃k : F/f ∗(E ′)→ F/f ∗(E)

given by composition with f ∗(k).

If (C, J) is a site of definition for E , the composite of Lf with the
canonical functor C → Sh(C, J) is also called the existential fibred
site of f .
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Existential toposes

Theorem
Let (C, J) be a small-generated site and L : Cop → Cat a
J-reflecting fibred site over C. Then L is existential if and only if
the families on the category G(L) of the form

{(ei , αi) : (Ei , li)→ (E , l) | i ∈ I}

where the family {αi : ∃ei (li)→ l | i ∈ I} is JL
E -covering are the

covering families for a Grothendieck topology Jext
L , called the

existential topology, on G(L).
Moreover, if L is an existential fibred site over (C, J), the existential
topology Jext

L contains the Giraud topology induced by J.

The relative topos

CpL : Sh(G(L), Jext
L )→ Sh(C, J)

is called the existential topos of L.
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Existential toposes

Proposition
• Let f : F → E be a geometric morphism. Then, under the

identification
(1 ↓ f ∗) ∼= G(Lf ),

the topology Jf on (1 ↓ f ∗), that is, the relative topology of f ,
corresponds to the existential topology Jext

Lf
on G(Lf ), where

Lf is the existential fibred site of f .

• Every internal locale L in a topos E yields an existential fibred
preorder site over the canonical site of E .
Moreover, for any E ∈ E , the topos of canonical sheaves on
the locale L(E) can be recovered as the localic reflection of
the slice at E of the existential topos associated with L.
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Morphisms of existential fibred sites

Definition
Given a topos E and existential fibred sites L and L′ over E , a
morphism α : L→ L′ is a morphism of indexed categories which
is cartesian and cover-preserving at each fiber and which
commutes with the left adjoints ∃e for any arrow e in E .

Theorem
Given relative toposes [f : F → E ] and [f ′ : F ′ → E ], the
geometric morphisms f → f ′ over E correspond precisely to the
morphisms of existential fibred sites Lf ′ → Lf .

Remark
This is a natural generalization of the classical result stating that
the geometric morphisms Sh(L)→ Sh(L′) correspond precisely
to the frame homomorphisms L′ → L.
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Fibers of existential toposes

Proposition
Let (C, J) be a small-generated site and L an existential fibred site
over (C, J) and c an object of C. Then the fibre
Sh(G(L), Jext

L )/C∗
πL
(l(c)) at c of the existential topos

CπL : Sh(G(L), Jext
L )→ Sh(C, J)

of L is equivalent to the topos of sheaves on the category Gext
c (L) of

elements of the functor HomC(πL(−), c), endowed with the
Grothendieck topology J̃c induced by Jext

L .

For any arrow k : c → c′ in C, the pullback functor admits a left
adjoint, given by the composition functor Σ(CπL )

∗(l(k)) with
(CπL)

∗(l(k)), which is induced by the comorphism of sites

Ek : Gext
c (L)→ Gext

c′ (L)

given by composition with k.
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Fibers of existential toposes
Proposition
For any object c of C, the fiber at c of the existential topos of L is
related to the topos of sheaves Sh(L(c), JL

c ) on the fiber of L at c
via the hyperconnected (whence open) geometric morphism

Sh(ic) ∼= Cextc : Sh(Gext
c (L), J̃c)→ Sh(L(c), JL

c )

induced respectively by the morphism of sites

ic : (L(c), JL
c )→ (Gext

c (L), J̃c)

sending an object x of L(c) to the object ((c, x),1c) of Gext
c (L), and

by the (left adjoint) comorphism of sites

extc : (Gext
c (L), J̃c)→ (L(c), JL

c )

sending an object ((d , y), f ) of Gext
c (L) to the object ∃f (y) of L(c).

Moreover, for any arrow k : c → c′ in C, the following diagram of
comorphism of sites commutes:

(Gext
c (L), J̃c) (L(c), JL

c )

(Gext
c′ (L), J̃ ′

c) (L(c′), JL
c′)

Ek ∃k

extc

extc′
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Characterization of internal locales
The following corollary gives a characterization of internal locales
in a topos Sh(C, J) of sheaves on an arbitrary, not necessarily
cartesian, small-generated site (C, J):

Corollary
Let (C, J) be a small-generated site. Then an internal locale in
Sh(C, J) is a functor L : Cop → Cat taking values in the subcategory
of frames and frame homomorphisms which is a J-sheaf and,
when considered as a fibred site (by endowing each frame with its
canonical topology), is existential i.e. the following conditions are
satisfied:

(i) Relative Beck-Chevalley condition: For any arrows c : V → Z
and d : W → Z in C with common codomain and any l ∈ L(V ),

L(d)(∃c(l)) = ∨
(a,b)∈B(c,d)

(∃b(L(a)(l))),

where B(c,d) is the collection of spans (a : U → V ,b : U →W )
such that c ◦ a = d ◦ c;

(ii) Frobenius reciprocity condition: for any a : E → E ′, l ∈ L(E)
and l ′ ∈ L(E ′),

∃a(L(a)(l ′) ∧ l) = ∃a(l) ∧ l ′ .
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Applications to logic

The idea of investigating logical theories by using a fibrational
formalism dates back to Lawvere and his notion of
(hyper)doctrine. More specifically:

• A first-order theory T over a signature Σ is represented as a
fibred preorder LT indexed by the category SortΣ of sorts of
Σ, whose objects are the finite list of variables of sorts in Σ
and whose arrows x⃗ → y⃗ are the maps from y⃗ to x⃗ which
respect sorts.

• The SortΣ-indexed category LT sends a context
x⃗ = (xA1

1 , . . . , xAn
n ) to the poset LT(x⃗) of T-provable

equivalence classes of first-order formulas over Σ in the
context x⃗ .

• The transition functors are given by substitution, and they
have adjoints on both sides, given by existential quantification
and universal quantification.
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Alternative syntactic sites
From a topos-theoretic point of view, if T is a geometric theory
then:
• the presheaf topos [Sortop

Σ ,Set] is the classifying topos EOΣ
of

the empty theory OΣ consisting of just the sorts of Σ;

• (The geometric version of) LT is an internal locale in
[Sortop

Σ ,Set];

• T is a localic expansion of OΣ, whence the canonical
geometric morphism ET → EOΣ

between their classifying
toposes is localic.

• Hence the classifying topos ET of T identifies with the
existential topos associated with the fibred site LT; in
particular, we obtain (G(LT), Jext

LT
) as an alternative syntactic

site for the classifying topos of T (cf. J. Wrigley’s talk at
Toposes Online for more details about it).

As shown in the paper Fibred sites and existential toposes, many
other alternative syntactic sites for the classifying topos of a
theory can be obtained through the same method.
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Completions of fibred preorder sites
It is possible to complete an arbitrary fibred preorder site to an
internal locale:

Proposition
Let (P,K ) be a fibered preordered site over a small-generated site
(C, J). Then the canonical functor

ηP : P→ LCpP
,

where LCpP
is the internal locale associated with the geometric

morphism CpP , satisfies the universal property of the internal
frame completion of (P,K ).
It can be described as follows:
• For any c ∈ C, LCpP

(c) identifies with the frame

ClSubK
[G(P)op,Set](HomC(pP(−), c))

of K -closed subobjects in [G(P)op,Set] of the presheaf
HomC(pP(−), c).
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Completions of fibred preorder sites
• The indexed functor ηP acts at an object c ∈ C as the functor

ηP(c) : P(c)→ LCpP
(c) = ClSubK

[G(P)op,Set](HomC(pP(−), c))

sending any element x ∈ P(c) to the K -closure of the
subfunctor of HomC(pP(−), c) sending any object (c′, x ′) of
G(P) to the subset
S(c′,x ′) ⊆ HomC(pP((c′, x ′)), c) = HomC(c′, c) consisting of
the arrows g : c′ → c such that x ′ ≤ P(g)(x).

Remarks
• This generalizes the completion of a preorder site (C, J) to

the frame IdJ(C) of J-ideals on C.
• It would be interesting to investigate the connection between

this kind of completions and the exact completions for
Lawvere doctrines and the tripos-to-topos construction.
• More generally, the notion of existential fibred site should

illuminate the relationships between Grothendieck toposes as
built from sites and elementary toposes as built from triposes.
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Towards relative geometric logic

The geometric approach to relative toposes which we have
developed so far has a logical counterpart, which we may call
relative geometric logic.

In its classical formulation, geometric logic does not have
parameters embedded in its formalism; still, it is possible to
introduce them without changing its degree of expressivity.

In a relative setting, parameters are fundamental if one wants to
reason geometrically and use fibrational techniques. In fact, the
semantics of stacks involves parameters in an essential way.

It turns out that the logical framework corresponding to relative
toposes is a kind of fibrational, higher-order parametric logic in
which it is possible to express a great number of higher-order
constructions by using the parameters belonging to the base
topos.
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A theorem about ‘elimination of parameters’

• The classical formulation of first-order logic by model
theorists does not allow for a natural treatment of
parameters, meaning sorts whose interpretation is fixed. So,
for instance, while the notion of module over a variable ring
can be very easily axiomatized, in order to formalize the
notion of a R-module for a fixed ring R, one needs to
introduce a function symbol fr for each element r of R and
axioms governing the relations between these symbols.

• To correct this asymmetry and lack of continuity between
parameters and sorts, we have proved (with Raffaele
Lamagna) a result showing that the syntax of ordinary
geometric logic can be naturally extended through the
introduction of constant sorts (i.e. sorts whose interpretation
in any model is fixed rather than variable). Any theory in the
extended signature can be shown to be Morita-equivalent,
via a method of ‘elimination of parameters’, to a theory in the
original signature.
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Fibrations of theories
• From a geometrical point of view, any theory with a variable

sort of ‘type R’ can be seen as a fibration of theories over the
classifying topos for ‘R-structures’, each of which
corresponding to a particular value of the parameter.
• Via this interpretation, turning a variable sort into a constant

one corresponds to taking the fiber corresponding to that
parameter, which is given by a fiber product of toposes.

For example, let M be the theory of (left) modules over a variable
(commutative) ring, and let R be the theory of (commutative) rings.
Then the classifying topos Set[M] is fibered over the classifying
topos Set[R] of R, and the fiber at a ring R internally to a topos E ,
that is the theory MR of R-modules (considered as a theory relative
to E), is given by the fibered product

E [MR] Set[M]

E Set[R]
⌜R⌝

⌟

where ⌜R⌝ is the morphism corresponding to the ring R via the
universal property of the classifying topos Set[R].

75 / 77



Relative toposes
for the working
mathematician

Olivia Caramello

Motivation

Preliminaries
Topos-theoretic
background

Toposes as ‘bridges’

Functors inducing
morphisms of
toposes

Relative toposes
Operations on stacks

Relative ‘presheaf
toposes’

The fundamental
adjunction

Some applications

Relative sheaf
toposes

Relative
Diaconescu’s
equivalence

Fibred sites and
existential
toposes

Towards relative
geometric logic

Future directions

Future developments

We plan to introduce a general stack semantics for ‘automatically’
transposing results from the absolute to the relative setting.

In particular, we intend to use this semantics to canonically obtain
relative versions, formulated in the language of indexed
categories and stacks, of the ordinary notions of limit and colimit,
adjunction and Kan extension, separating set, filteredness and
flatness, denseness conditions etc.

Among the main results that we expect to obtain there are:
- a relative version of Giraud’s theorem (with Léo Bartoli);
- a theory of classifying toposes of (higher-order) relative

geometric theories (with Raffaele Lamagna).
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For further reading
O. Caramello,
Denseness conditions, morphisms and equivalences of
toposes,
arxiv:math.CT/1906.08737v3 (2020).

O. Caramello and R. Zanfa,
Relative topos theory via stacks,
arxiv:math.AG/2107.04417v1 (2021).

L. Bartoli and O. Caramello,
On morphisms of relative toposes,
arxiv:math.AG/2310.20691 (2023).

O. Caramello
Fibred sites and existential toposes,
arxiv:math.AG/2212.11693 (2022).

O. Caramello
Theories, Sites, Toposes: Relating and studying mathematical
theories through topos-theoretic ‘bridges’,
Oxford University Press (2017).
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