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I. Why subtoposes?

• Why toposes?
- Toposes as a wide generalisation of topological spaces.
- Toposes as universal invariants.
- Toposes as pastiches of the category of sets.
- Toposes as incarnations of the semantics of theories.

• The multiple expressions of the notion of subtopos
- The categorical definition.
- The expression in terms of Grothendieck topologies.
- The logical expression in terms of quotient theories.
- Provability as a topological problem.

• The geometric operations on subtoposes
- Inner operations: intersection, union, difference.
- Outer operations: existential push-forward,

pull-back,
universal push-forward.
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Toposes as a wide generalisation of topological spaces:
Definition. – A topos is a category E which is equivalent to the category

ĈJ of set-valued “sheaves”
on a site (C, J) consisting in{

C = (essentially) small category,
J = “topology” on C = notion of “covering”.

Remark: Any topological space X defines the topos
EX = category of set-valued sheaves on{

CX = category of open subsets of X ,
JX = ordinary notion of covering by subsets.

Definition. – A morphism of toposes E ′ f−→ E is a pair of adjoint functors

(E f∗−−→ E ′ , E ′ f∗−−→ E)
such that f ∗ respects finite limits.

Remarks:
• Any continous map X ′ f−→ X induces a topos morphism f : EX ′ −→ EX .

• The map (X ′ f−→ X ) 7→ (EX ′ → EX ) is one-to-one if X is “sober”.
• Points of a topos E are defined as topos morphisms {sets} = Pt −→ E .
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Toposes as universal invariants:
Cohomology:

Sheaf cohomology on topological spaces
generalises to arbitrary linear objets
of arbitrary toposes related by arbitrary morphisms of toposes.

Homotopy:
The construction of fundamental groups π1

and higher homotopy groups πi , i ≥ 2,
of locally connected topological spaces X
factorises through their associated toposes EX

and generalises to toposes E which are “locally connected”.

Topos invariants and Caramello’s “bridge” theory:
• More generally, any construction or property which is

− phrased in categorical terms,
− well-defined for toposes (or wide classes of toposes),
− invariant under equivalences of toposes,

defines an invariant of sites (C, J).
• The expression of such an invariant in different equivalent sites

(C, J) and (C ′, J ′) related by ĈJ ∼= Ĉ ′
J ′

often generates unexpected equivalences.
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Toposes as pastiches of the category of sets:
Theorem (Grothendieck-Giraud). – A category E is a topos if and only if:
(0) E is locally small.
(1) Arbitrary limits are well-defined in E .
(2) Arbitrary colimits are well-defined in E .
(3) Base change functors E ′ ×E • in E respect arbitrary colimits.
(4) Filtering colimit functors in E respect finite limits.
(5) Sums in E are disjoint.
(6) A morphism in E is an isomorphism if (and only if)

it is a monomorphism and an epimorphism.
(7) Quotients of an objet E of E correspond one-to-one

to equivalence relations R ↪→ E × E.
(8) The subobjects of an object E of E form a set.
(9) The quotients of an object E of E form a set.

(10) The contravariant functor E 7→ {subobjects of E}

is representable by an object Ω of E , the “subobject classifyer”.
(11) For any objects E ,E ′ of E , the functor Hom(E × •,E ′)

is representable by an object Hom(E ,E ′) of E .
(12) The category E has small “separating” families of objects.
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Toposes for expressions of the semantics of theories:

Let T be a “geometric” first-order theory consisting in
• a vocabulary (or “signature”)

− names of objects (or “sorts”),
− names of operations (or “function symbols”),
− names of relations (or “relation symbols”),

• a family of “axioms” taking the form of implications
φ(xA1

1 · · · xAn
n ) ⊢ ψ(xA1

1 · · · xAn
n )

between “formulas” in variables
xA1

1 · · · xAn
n associated with “sorts” A1, · · · ,An

which are “geometric” in the sense that they only use the symbols ∧ (finite conjunction), ⊤ (truth),
∨ (arbitrary disjunction), ⊥ (false),
∃ (existential quantifier in part of the variables).

Proposition. – (i) For any topos E ,
there is a well-defined category of “models” of T in E T-mod (E).
(ii) Any topos morphism f : E ′ → E induces a pull-back functor of models of T

f ∗ : T-mod (E) −→ T-mod (E ′) .
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Toposes as incarnations of the semantics of theories:

Theorem (Grothendieck, Hakim, Lawvere, Joyal, Makkai, Reyes, · · · ). –
For any first-order geometric theory T, there exist{

a topos ET (called the “classifying topos” of T),
a model UT of T in ET (called the “universal model” of T)

such that, for any topos E , the functor

(E f−→ ET) 7−→ f ∗UT
Geom(E , ET) −→ T-mod(E)

∥ ∥ category of
topos morphisms

E → ET


category of

“models”
of T in E


is an equivalence of categories.

Remarks: • Conversely, for any topos E ,
there are infinitely many first-order geometric theories T
such that ET ∼= E .
• Theories T,T ′ such that ET ∼= ET ′ can be called “semantically equivalent”.
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The multiple expressions of the notion of subtopos :

Categorical definition. –
A subtopos of a topos E is a full subcategory E ′ ↪→ E such that:
(1) The embedding functor j∗ : E ′ ↪→ E

has a left adjoint j∗ : E → E ′.
(2) This left adjoint j∗ : E → E ′

respects not only arbitrary colimits but also finite limits.
(3) An object E of E belongs to the full subcategory E ′

if and only if the canonical morphism
E → j∗j∗E is an isomorphism.

Remarks:
• A topos morphism f : E ′ → E
can be called an “embedding” if its push-forward component

f∗ : E ′ → E is fully faithful
or, equivalently, if the natural transformation

f ∗ ◦ f∗ → IdE ′ is an isomorphism.
• Subtoposes of a topos E can equivalently be defined
as equivalence classes of embeddings E ′ ↪→ E .
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Expressions of subtposes in terms of Grothendieck topologies:

Theorem (Grothendieck, SGA 4). –
Let E be a topos presented as the category of sheaves

ĈJ on a site (C, J)
consisting in an essentially small category C endowed with a topology J.
Then:
(i) Any topology J ′ on C which contains J defines a subtopos

ĈJ ′ ↪−→ ĈJ ∼= E .

(ii) Conversely, any subtopos of ĈJ ∼= E
is associated with a unique topology J ′ ⊇ J of C.

Consequences:
• The subtoposes of any topos E form a partially ordered set.
• Arbitrary joins

∨
of subtoposes are always well-defined.

They correspond to arbitrary intersections of topologies.
• Arbitrary intersections

∧
of subtoposes are always well-defined.

They correspond to topologies generated
by families of topologies.

L. Lafforgue Geometry and logic of subtoposes September 3-6, 2024 10 / 90



Logical expression of subtoposes in terms of quotient theories:

Definition. – Let T be a geometric first-order theory written in a vocabulary Σ.
Then:
(i) A quotient theory T ′ of T is a geometric first-order theory

written in the same vocabulary Σ
and such that any implication (or “sequent”) of geometric formulas

φ(xA1
1 , · · · , x

An
n ) ⊢ ψ(xA1

1 , · · · , x
An
n )

which is provable in T is also provable in T ′.
(ii) Two quotient theories T1 and T2 of T

are called “syntactically equivalent”
if they have the same provable implications φ(x⃗) ⊢ ψ(x⃗).

Theorem (O.C., PhD thesis; see chapter 3 of [TST]). –
(i) Any quotient theory T ′ of a geometric first-order theory T

is classified by a subtopos ET ′ ↪−→ ET .
(ii) Conversely, any subtopos E ′ ↪−→ ET

is associated with a quotient theory T ′ of T,
which is unique up to syntactic equivalence.
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Provability as a topological problem:

Corollary. –
Suppose T is a geometric first-order theory written in a vocabulary Σ
and its classifying topos ET
is presented as the category of sheaves on a site (C, J): ET ∼= ĈJ .
Then it is possible to construct from any sequent of geometric formulas

φ(x⃗) ⊢ ψ(x⃗) in the vocabulary Σ
a family of “sieves” on C Xx⃗,φ,ψ
such that:
(i) For any quotient theory T ′ of T

defined by a family of extra axioms φi(x⃗i) ⊢ ψi(x⃗i), i ∈ I,
the associated subtopos ET ′ ↪−→ ET ∼= ĈJ
corresponds to the topology J ′ ⊇ J on C
generated by J and the families of sieves Xx⃗i ,φi ,ψi

, i ∈ I.

(ii) Any implication of geometric formulas φ(x⃗) ⊢ ψ(x⃗)
is provable in T ′ if and only if
all sieves in the associated family Xx⃗,φ,ψ
belong to the topology J ′ generated by J and the families Xx⃗i ,φi ,ψi

.
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First inner geometric operations on subtoposes:

Lemma. – Let E be a topos and (Ei ↪→ E)i∈I a family of subtoposes.
(i) There exists a unique subtopos

∨
i∈I

Ei ↪−→ E

characterized by the property that, for any subtoposes E ′ ↪→ E ,
E ′ ⊇

∨
i∈I

Ei ⇐⇒ E ′ ⊇ Ei , ∀ i ∈ I .

(ii) There exists a unique subtopos
∧
i∈I

Ei ↪−→ E

characterized by the property that, for any subtoposes E ′ ↪→ E ,
E ′ ⊆

∧
i∈I

Ei ⇐⇒ E ′ ⊆ Ei , ∀ i ∈ I .

Remark: If E ∼= ĈJ
and the subtoposes Ei ↪→ E are associated with topologies Ji ⊇ J, i ∈ I, then:
• the subtopos

∨
i∈I

Ei is associated with the topology⋂
i∈I

Ji ,

• the subtopos
∧
i∈I

Ei is associated with the topology

generated by the Ji ’s, i ∈ I.
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The inner operation of difference of subtoposes:

Proposition (Joyal?; see [Elephant]). –
For any pair of subtoposes E1, E2 of a topos E ,
there exists a unique subtopos

E1\E2 ↪−→ E
characterized by the property that, for any subtopos E ′ ↪→ E ,

E1\E2 ⊆ E ′ ⇐⇒ E1 ⊆ E2 ∨ E ′ .

Remark:
If E ∼= ĈJ and E1, E2 are defined by topologies J1, J2 on C,
then E1\E2 is defined by a topology denoted

(J2 ⇒ J1)
and characterized by the property that, for any topology J ′ on C,

(J2 ⇒ J1) ⊇ J ′ ⇐⇒ J1 ⊇ (J2 ∩ J ′).

Corollary. – For any subtopos E ′ ↪→ E of a topos E , we have:
(i) The map of union with E ′ E ′ ∨ •

respects arbitrary intersections of subtoposes of E .
(ii) The map of intersection with E ′ E ′ ∧ •

respects finite unions of subtoposes of E .
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Images of topos morphisms:

Proposition. – Any topos morphism f : E ′ → E uniquely factorizes as

E ′ f
−−↠ Im(f ) �

� jf // E
where
• Im(f ) �

� jf // E is an embedding of a subtopos,

• E ′ f
−−↠ Im(f ) is a “surjective” topos morphism

in the sense that its pull-back component
f
∗
: Im(f ) −→ E ′ is faithful.

Remarks:
• If E ∼= ĈJ and C is endowed with C y−→ Ĉ j∗−→ ĈJ ,

the subtopos Im(f ) ↪→ E is defined by the topology J ′ ⊇ J
for which a sieve S ↪→ y(X ) is covering if and only if its transform by

Ĉ j∗−→ ĈJ ∼= E f∗−−→ E ′ is an isomorphism of E ′.
• If E ∼= ET and f : E ′ → E corresponds to a model M of T in E ′,

the subtopos Im(f ) ↪→ E corresponds to the “theory of M” TM

i.e. the quotient theory TM of T for which a sequent φ(x⃗) ⊢ ψ(x⃗)
is provable in TM if and only if it is verified by M.
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Existential push-forward and pull-back of subtoposes:

Proposition. – Let f : E ′ → E be a morphism of toposes.
Then:
(i) The map

f∗ : {subtoposes E ′
1 ↪→ E ′} −→ {subtoposes E1 ↪→ E},

(E ′
1 ↪→ E ′) 7−→ (Im(E ′

1 ↪→ E ′ f−→ E) ↪→ E)
respects the order relation ⊇
and arbitrary unions of subtoposes.

(ii) Equivalently, it has a left adjoint
f−1 : {subtoposes E1 ↪→ E} −→ {subtoposes E ′

1 ↪→ E ′},
(E1 ↪→ E) 7−→ (f−1E1 ↪→ E ′)

characterized by the property that,
for any subtoposes E1 ↪→ E and E ′

1 ↪→ E ′,
f−1E1 ⊇ E ′

1 ⇔ E1 ⊇ f∗(E ′
1) = Im(E ′

1) .

Remark:
The map f−1

respects the order relation ⊇
and arbitrary intersections of subtoposes.
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Universal push-forward of subtoposes:

Theorem (O.C., L.L., to appear in [Engendrement]). –
Let f : E ′ → E be a topos morphism which is “locally connected”. Then:

(i) The associated pull-back map
f−1 : {subtoposes E1 ↪→ E} −→ {subtoposes E ′

1 ↪→ E ′},
(E1 ↪→ E) 7−→ (f−1E1 ↪→ E ′)

respects arbitrary unions of subtoposes.
(ii) Equivalently, it has a left adjoint

f! : {subtoposes E ′
1 ↪→ E ′} −→ {subtoposes E1 ↪→ E},

(E ′
1 ↪→ E ′) 7−→ (f!E ′

1 ↪→ E ′)
characterized by the property that,
for any subtoposes E1 ↪→ E and E ′

1 ↪→ E ′,
f!E ′

1 ⊇ E1 ⇔ E ′
1 ⊇ f−1E1 .

Corollary. – For any topos morphism f : E ′ → E ,
the associated pull-back map

f−1 : {subtoposes E1 ↪→ E} −→ {subtoposes E ′
1 ↪→ E ′}

respects finite unions of subtoposes.
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II. Subtoposes and Grothendieck topologies:

• The general notion of Galois connection
- Equivalences induced by pairs of adjoint functors.
- The particular case of ordered structures.
- Pairs of adjoint functors defined by relations.
- Induced equivalences and generation processes.

• The duality of sieves and presheaves
- Definition of their relation.
- The induced duality of topologies and subtoposes.
- Grothendieck topologies as fixed points.
- Subtoposes as fixed points.

• The duality of monomorphisms and objects in a topos
- Definition of their relation.
- The induced notion of topology on a topos.
- The induced duality of topologies and subtoposes.

• The duality of sieves and monomorphisms of presheaves
- Definition of their relation.
- The induced duality fo topologies and closedness properties.
- Topologies as fixed points.
- Closedness properties as fixed points.
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Equivalences induced by pairs of adjoint functors:

Proposition. – Consider a pair of adjoint functors

(C F−−→ D , D G−−→ C)
between locally small categories.
Let C ′ [resp. D ′] be the full subcategory of C [resp. D]
on “fixed points”, i.e. objects X of C [resp. Y of D]
such that the canonical adjunction morphism

X −→ G ◦ F (X ) [resp. F ◦ G(Y ) → Y]
is an isomorphism.
Then F and G induce converse equivalences

C ′ ∼ // D ′ .
∼

oo

Proof: If X → G ◦ F (X ) is an isomorphism and Y = F (X ),
then Y → F ◦ G(Y ) is also an isomorphism.
This implies that the canonical morphism

F ◦ G(Y ) → Y is an isomorphism
as the composite

F (X ) → F ◦ G ◦ F (X ) → F (X ) is IdF(X).
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The particular case of ordered structures:
Corollary. – Consider a pair of partially ordered sets or classes
related by a pair of order-preserving maps

(C,≤)
F // (D,≤)
G
oo

which are adjoint in the sense that
F (c) ≤ d ⇔ c ≤ G(d), ∀ c ∈ C, ∀d ∈ D.

Then:
(i) If C ′ = {c ∈ C | G ◦ F (c) = c} and D ′ = {d ∈ D,F ◦ G(d) = d },

F and G induce inverse bijections C ′ ∼ // D ′ .
∼

oo

(ii) An element c ∈ C [resp. d ∈ D] is fixed by G ◦ F [resp. by F ◦ G]
if and only if it is an image in the sense that

c ∈ Im(G) [resp. d ∈ Im(F )].

Remarks: For any c ∈ C [resp. d ∈ D], we have
c ≤ G ◦ F (c) [resp. F ◦ G(d) ≤ d ]

and G ◦ F (c) ≤ c ′ if c ′ ∈ C ′ and c ≤ c ′

[resp. d ′ ≤ F ◦ G(d) if d ′ ∈ D ′ and d ′ ≤ d ].
Proof of (ii): If c = G(d), we have

c ≤ (G ◦ F )(c) = G ◦ (F ◦ G)(d) ≤ G(d) = c.
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Pairs of adjoint maps defined by relations:

Lemma (coming back to Birkhoff, see section 3.2 of [Galois]) . –
Consider an arbitrary relation R ↪−→ T × S
between a pair of sets or classes T and S.
Then R defines a pair of adjoint order-preserving maps

(P(T ),⊆)
FR // (P(S),⊇)
GR

oo

between the partially ordered sets or classes
of subsets or subclasses of S and T

FR(J) = {s ∈ S | (t , s) ∈ R, ∀ t ∈ J} for any J ⊆ T ,
GR(I) = {t ∈ T | (t , s) ∈ R, ∀ s ∈ I} for any I ⊆ S.

Proof:
• It is obvious on the definition that

J1 ⊆ J2 ⇒ FR(J1) ⊇ FR(J2),
I1 ⊇ I2 ⇒ GR(I1) ⊆ GR(I2).

• For J ⊆ T and I ⊆ S, we have equivalences
FR(J) ⊇ I ⇔ (t , s) ∈ R, ∀ t ∈ J, ∀ s ∈ I⇔ J ⊆ GR(I).
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Induced equivalences and generation processes:
Corollary. – Consider a relation R ↪−→ T × S
and the induced pair of adjoint order-preserving maps

(P(T ),⊆)
FR // (P(S),⊇).
GR

oo
Then:

(i) The maps FR and GR induce inverse bijections

{J ⊆ T | GR ◦ FR(J) = J} // {I ⊆ S | FR ◦ GR(I) = I}.oo

(ii) For any J ⊆ T [resp. I ⊆ S], we have
GR ◦ FR(J) = J [resp. FR ◦ GR(I) = I]

if and only if there exists I ⊆ S [resp. J ⊆ T ] such that
J = GR(I) [resp. I = FR(J)].

(iii) For any J ⊆ T [resp. I ⊆ S], we have
J ⊆ GR ◦ FR(J) [resp. FR ◦ GR(I) ⊇ I]

and J ⊆ J ′ ⇒ GR ◦ FR(J) ⊆ J ′ if J ′ = GR ◦ FR(J ′)
[resp. I ′ ⊇ I ⇒ I ′ ⊇ FR ◦ GR(I) if I ′ = FR ◦ GR(I ′)].

Remark: For any J ⊆ T [resp. I ⊆ S],
GR ◦ FR(J) [resp. FR ◦ GR(I)] can be called
the element of Im(GR) [resp. of Im(FR)] generated by J [resp. I].
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The duality of sieves and presheaves:

Definition. –
Consider an essentially small category C, endowed with the Yoneda functor

y : C ↪→ Ĉ = {category of presheaves Cop → Set}.
Let T be the class of pairs (X ,C) consisting in{

X = object of C,
C = sieve on X = subpresheaf of y(X ).

Let S be the class of presheaves P on C.
We shall call “duality of sieves and presheaves” the relation

R ↪−→ T × S
consisting in pairs of elements

(C ↪−→ y(X ),P)

such that, for any morphism X ′ x−→ X of C, the restriction map
P(X ′) = Hom(y(X ′),P) −→ Hom(C ×y(X) y(X ′),P)

is one-to-one.

Consequence: This relation induces adjoint order-preserving maps

(P(T ),⊆)
FR // (P(S),⊇).
GR

oo
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The induced duality of topologies and subtoposes:

Theorem (extracted from [Engendrement]). –
(i) A subclass J of T = {sieves C on objects X of C}

is a fixed point of the duality of T with S = {presheaves P on C}
if and only if J is a Grothendieck topology.

(ii) A subclass I of S
is a fixed point of the duality of T and S
if and only if I is the class of objects of a subtopos E of Ĉ.

Corollary. –
(i) The duality of sieves and presheaves on C

induces a one-to-one correspondence
between Grothendieck topologies J on C
and subtoposes of Ĉ.

(ii) For any family J of sieves,
GR ◦ FR(J) is the topology generated by J.

(iii) For any class I of presheaves on C,
FR ◦ GR(I) is the smallest subtopos of Ĉ which contains I.
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Precise identification of fixed points:
Theorem. – A class J ⊆ T of sieves (C ↪→ y(X )) on C
is a fixed point of the duality of T with S
if and only if it is a topology, i.e. verifies:
(Max) For any object X of C, the maximal sieve y(X ) belongs to J.
(Stab) If (C ↪→ y(X )) belongs to J, then for any morphism x : X ′ → X,

(x∗C = C ×y(X) y(X ′) ↪→ y(X ′)) also belongs to J.
(Trans) If (C ′ ↪→ y(X )) belongs to J, a sieve (C ↪→ y(X )) belongs to J

if, for any morphism X ′ x−→ X belonging to C ′,
(x∗C = C ×y(X),x y(X ′) ↪→ y(X ′)) belongs to J.

Theorem. – A class I ⊆ S of presheaves on C is a fixed point of the duality
if and only if the full subcategory E of Ĉ on objects of I
is a “subtopos” in the sense that:

(1) The embedding functor E
j∗

↪−→ Ĉ has a left-adjoint j∗.

(2) This left-adjoint j∗ : Ĉ → E respects finite limits.

(3) An object P of Ĉ is in E , i.e. is an element of I,
if and only if the canonical morphism P −→ j∗ ◦ j∗P is an isomorphism.
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Any class of presheaves defines a Grothendieck topology:

• Consider a class I of presheaves P on C.
We need to verify that the class J of sieves C on objects X of C such that{

for any morphism X ′ x−→ X and any P ∈ I,
the restriction map P(X ′) = Hom(y(X ′),P) −→ Hom(C ×y(X) y(X ′),P) is one-to-one

is a topology.
• Any intersection of topologies is a topology.
So it is enough to consider the case where I has a unique element P.
• The above condition is verified by maximal sieves C = y(X ).
• By definition, it is stable under base change by any X ′ x−→ X .
• Consider sieves C ↪→ y(X ) and C ′ ↪→ y(X )

such that C ′ ∈ J and x∗C = C ×y(X) y(X ′) ∈ J, ∀ (X ′ x−→ X ) ∈ C ′.
As these conditions are respected by base change,
we are reduced to check that the map

P(X ) = Hom(y(X ),P) −→ Hom(C,P) is one-to-one.
For any morphism C

p−→ P, the composite induced by any (X ′ x−→ X ) ∈ C ′

x∗C = C ×y(X) y(X ′) −→ C −→ P
uniquely lifts to a morphism y(X ′) → P. This defines a morphism C ′ → P

which lifts to y(X ) → P. The composite C ↪→ y(X ) → P coincides with C
p−→ P

as they coincide on C ×y(X) C ′.
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Any class of sieves defines a subtopos:

• If J is a class of sieves C ↪→ y(X ) on objects X of C,
the class of presheaves FR(J) associated with J
is the same as the class of presheaves associated with GR ◦ FR(J).
• So we may suppose that J is a topology.
• Then FR(J) is the class of J-sheaves on C.
The full subcategory ĈJ on FR(J) is a subtopos

(Ĉ j∗−−→ ĈJ , ĈJ
j∗

↪−→ Ĉ).
• Furthermore, in that case, J is the class of sieves C ↪→ y(X ) such that

j∗C −→ j∗ ◦ y(X ) is an isomorphism
or, equivalently, such that for any J-sheaf E ,
the restriction map

Hom(y(X ),E)
∼−−→ Hom(C,E) is one-to-one.

• This proves that, if J is a topology,
GR ◦ FR(J) = J .

• In other words, a subclass J of T = {sieves C ↪→ y(X )}
is a fixed point of GR ◦ FR
if and only if it is a topology.
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Any subtopos is a fixed point of the duality relation:
• Consider a subtopos of Ĉ defined by a class I of presheaves

(Ĉ j∗−−→ E , E
j∗

↪−→ Ĉ).
• For any sieve C ↪→ y(X ), the restriction map

Hom(y(X ), j∗E) −→ Hom(C, j∗E) is one-to-one
for any object E of E if and only if the induced morphism

j∗C −→ j∗y(X ) is an isomorphism.
• This condition defines a topology J = GR(I).
• We have to check that, conversely, any J-sheaf E

is an object of E , i.e. verifies E ∼−−→ j∗ ◦ j∗E .
• Consider the diagonal embedding E ↪→ E ×j∗◦j∗E E .

For any morphism y(X ) → E ×j∗◦j∗E E ,
its fiber product with the diagonal E is a sieve

C ↪→ y(X ) which belongs to J.
So the morphism C → E uniquely lifts to y(X ) → E .

• This proves that E → j∗ ◦ j∗E is a monomorphism.
Its fiber product with any morphism y(X ) → j∗ ◦ j∗E
is a sieve C ↪−→ y(X ) which belongs to J.

• So the morphism C → E uniquely lifts to y(X ) → E which means that
E −→ j∗ ◦ j∗E is an isomorphism.
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The duality of monomorphisms and objects in a topos:

Definition. –
Consider a topos E .
Consider the class T of monomorphisms of E

C ↪−→ X.
Consider the class S of objects E of E .
We shall call “duality of monomorphisms and objects” in E the relation

R ↪−→ T × S
consisting in pairs of elements

(C ↪−→ X ,E)
such that, for any morphism X ′ → X of E ,
the restriction map

Hom(X ′,E) −→ Hom(C ×X X ′,E) is one-to-one.

This relation induces a pair of adjoint order-preserving maps

(P(T ),⊆)
FR // (P(S),⊇).
GR

oo
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The induced notion of topology on a topos:

Proposition. –
A subclass J ⊆ T = {monomorphisms C ↪→ X of E}
is a fixed point of the duality of T and S = {objects of E}
if and only if it is a topology of E
in the sense that it verifies the conditions:

(Max) Any isomorphism C ∼−−→ X is an element of J.
(Stab) Base change by any morphism X ′ → X of E

transforms elements C ↪→ X of J
into elements C ×X X ′ ↪→ X ′ of J.

(Trans) A monomorphism
C ↪−→ X is in J

if there exist (C ′ ↪→ X ) ∈ J
and a globally epimorphic family (Xk → C ′)k∈K

such that all fiber products
C ×X Xk ↪−→ Xk , k ∈ K , belong to J.
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The induced notion of subtopos of a topos:

Proposition. –
A subclass I ⊆ S = {objects E of E}
is a fixed point of the duality of S and T = {monomorphisms of E}
if and only if the full subcategory EI of E on objects of I
is a subtopos
in the sense that it verifies the conditions:

(1) The embedding functor j∗ : EI ↪→ E has a left adjoint j∗.

(2) This left adjoint functor j∗ : E → EI
respects finite limits.

(3) An objet E of E belongs to I
if and only if the canonical morphism

E −→ j∗ ◦ j∗E is an isomorphism.
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The induced duality of topologies and subtoposes:

We still consider the pair of adjoint order-preserving maps

(P(T ),⊆)
FR // (P(S),⊇)
GR

oo

defined by the duality R of T = {monomorphisms of E}
and S = {objets of E}.

Corollary. –
(i) This duality induces a one-to-one correspondence

between topologies on the topos E

and subtoposes (E j∗−−→ E ′, E ′ j∗
↪−→ E) of E .

(ii) For any subclass J of monomorphisms C ↪→ X of E ,
GR ◦ FR(J) is the topology generated by J,
i.e. the smallest topology which contains J.

(iii) For any subclass I of objects E of E ,
FR ◦ GR(I) is the subtopos generated by I,
i.e. the smallest subtopos of E which contains I.

L. Lafforgue Geometry and logic of subtoposes September 3-6, 2024 32 / 90



The duality of sieves and monomorphisms of presheaves:

Definition. –
Consider an essentially small category C, endowed with y : C ↪→ Ĉ.
Consider the class T = {sieves C ↪→ y(X )}.
Consider the class S of monomorphisms of presheaves on C

Q ↪−→ P .
We shall call “duality of sieves and subpresheaves” on C the relation

R ↪−→ T × S
consisting in pairs of elements

(C ↪−→ y(X ), Q ↪−→ P)
such that:

for any morphism X ′ x−→ X of C and any element p ∈ P(X ′),
one has p ∈ Q(X ′)

if x ′∗(p) ∈ Q(X ′′) , ∀ (X ′′ x ′

−−→ X ′) ∈ x∗C.

This relation induces a pair of adjoint order-preserving maps

(P(T ),⊆)
FR // (P(S),⊇).
GR

oo
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Topologies and closedness properties as fixed points:

Theorem (extracted from [Engendrement]). –
(i) A subclass J ⊆ T = {sieves C ↪→ y(X )}
is a fixed point of the duality of T and S = {subpresheaves Q ↪→ P}

if and only if J is a topology on C.
(ii) A subclass I ⊆ S is a fixed point of the duality of T and S if and only if I is
a “closedness property” in the sense that if verifies the following conditions:

(1) Isomorphisms Q ∼−→ P belong to I.
(2) Base change by any morphism P ′ → P of Ĉ

transforms subpresheaves Q ↪→ P which belong to I
into subpresheaves Q ×p P ′ ↪→ P ′ which belong to I.

(3) For any family of subpresheaves
Qk ↪−→ P , k ∈ K , which belong to I,

their intersection ⋂
k∈K

Qk ↪−→ P still belongs to I.

(4) If Q ↪→ P denotes the smallest element of I containing some Q ↪→ P,
one has for any morphism P ′ → P of Ĉ

P ′ ×P Q = P ′ ×P Q .
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The induced duality of topologies and closedness properties:

Corollary. –
(i) The “duality of sieves and subpresheaves” on C

induces a one-to-one correspondence between Grothendieck topologies of C
and closedness properties on subpresheaves on C.

(ii) For any class J of sieves C ↪→ y(X ) on objects X of C,

GR ◦ FR(J) = J is the topology generated by J,
i.e. the smallest topology containing J.

Furthermore, J and J define the same “closedness property” of subpresheaves
and induce the same operation of closure of subpresheaves

(Q ↪→ P) 7−→ (Q ↪→ P)
which, in particular, is respected by base change along any P ′ → P,
in the sense that

Q ×P P ′ = Q ×P P ′ .

(iii) For any class I of subpresheaves Q ↪→ P on C,

FR ◦ GR(I) = I is the smallest “closure property” which contains I.

Furthermore, I and I define the same topology on C
GR(I) = GR(I) .
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Any class of subpresheaves defines a topology:
• Consider a class I of subpresheaves Q ↪→ P.
We need to verify that the class J of sieves C ↪→ y(X ) such that{

for any morphism X ′ x−→ X and any p ∈ P(X ′)

one has p ∈ Q(X ′) if x ′∗(p) ∈ Q(X ′′) , ∀ (X ′′ x ′
−−→ X ′) ∈ x∗C,

is a topology.
• As any intersection of topologies is a topology,
it is enough to consider the case where I has a unique element Q ↪→ P.
• The above condition is verified by maximal sieves C = y(X ).
• By definition, this condition is stable under base change by any morphism X ′ x−→ X .
• Consider sieves C ↪→ y(X ) and C ′ ↪→ y(X ) such that
C ′ ∈ J and x∗C ∈ J, ∀ (X ′ x−→ X ) ∈ C ′.
As these properties are stable under base change,
it is enough to prove that any element p ∈ P(X )

such that x∗(p) ∈ Q(X ′), ∀ (X ′ x−→ X ) ∈ C, is in Q(X ).
• For any (X ′ x−→ X ) ∈ C ′, we have x∗C ∈ J

and x ′∗ ◦ x∗(p) ∈ Q(X ′′), ∀ (X ′′ x ′
−−→ X ′) ∈ x∗C, which implies that x∗(p) ∈ Q(X ′).

As C ′ ∈ J, we conclude that p ∈ Q(X ).
This means that C ∈ J.
• So J verifies (Trans) in addition to (Max) and (Stab).
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Any class of sieves defines a “closedness property”:

• Consider a class J of sieves and its image

I = FR(J) =

Q ↪→ P

∣∣∣∣∣∣∣
∀ (C ↪→ y(X )) ∈ J , ∀ (X ′ x−→ X ) ,
∀p ∈ P(X ′), one has p ∈ Q(X ′)

if x ′∗(p) ∈ Q(X ′′) , ∀ (X ′′ x ′

−−→ X ′) ∈ x∗C

 .
• It is obvious from this definition that− all isomorphisms Q ∼−→ P belong to I,
− the class I is respected by all base changes P ′ → P,
− it is also stable under intersections of elements Qk ↪→ P, k ∈ K .

• We already know that GR ◦ FR(J) = J is a topology and I = FR(J).
• This implies that for any subpresheaf Q ↪→ P
the smallest element of I which contains Q

Q ↪−→ P
is characterized by the following formula at any object X of C

Q(X ) = {p ∈ P(X ) | ∃C ∈ J(X ) , x∗(p) ∈ Q(X ′) , ∀ (X ′ x−→ X ) ∈ C}.
• This formula implies that, for any morphism P ′ → P,

Q ×P P ′ = Q ×P P ′ as subpresheaves of P ′.
• We conclude that I = FR(J) = FR(J) is a “closedness property”.
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Topologies and “closedness properties” as fixed points:
• Consider a topology J and the associated “closedness property”

I = FR(J) .
It defines a “closure operation” on subpresheaves

(Q ↪→ P) 7−→ (Q ↪→ P)
where, for any object X of C,

Q(X ) = {p ∈ P(X ) | ∃C ∈ J(X ) , x∗(p) ∈ Q(X ′) , ∀ (X ′ x−→ X ) ∈ C}.
If C ↪→ y(X ) is a sieve belonging to GR ◦ FR(J) = GR(I),
one has for any subpresheaf Q ↪→ P and any morphism y(X ) → P
the implication C ⊆ Q ×P y(X ) ⇒ Q ×P y(X ) = y(X ).
This means that C = y(X ) or, equivalently, C ∈ J.
We conclude that J = GR ◦ FR(J) is a fixed point.
• Consider a “closedness property” I and the associated topology J = GR(I).
A sieve C ↪→ y(X ) belongs to J
if and only if, for any morphism X ′ → X
and any Q ↪→ y(X ′) which belongs to I,
one has the implication x∗C ⊆ Q ⇒ Q = y(X ′).
This means that C ∈ J if and only if C = y(X ).
We conclude that I = FR ◦ GR(I) is a fixed point.
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III. Generation of topologies and provability:

• A closed formula for the generation of topologies
- The dualities of sieves with presheaves and with subpresheaves.
- Sieves and closedness properties of subpresheaves.
- A generation formula based on closure operations.
- Application to joins of topologies.
- Application to finite products of toposes.

• A generation formula in terms of multicoverings
- The notion of multicovering of an object.
- Explicitation of closure operations of subpresheaves.
- An explicit formula for generated topologies.

• Topological interpretations of provability problems
- Topological interpretations of geometric axioms.
- Reduction to atomic and Horn formulas.
- Constructive interpretations of axioms in terms of covering sieves.
- The problem of presentations of classifying toposes.
- The case of presheaf type theories.
- The case of cartesian theories.
- The case of theories without functions symbols and without axioms.
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Reminder on the duality of sieves and presheaves:

• For any essentially small category C, there is a duality
between T = {(C ↪→ y(X )) | X = object of C, C ↪→ y(X ) in Ĉ}
and S = {presheaves (P : Cop → Set) = objects of Ĉ}

defined by the relation R ↪−→ T × S
consisting in pairs (C ↪→ y(X ),P) such that

∀ (X ′ x−−→ X ) , P(X ′) = Hom(y(X ′),P) −→ Hom(x∗C,P) is one-to-one.
• This duality induces a pair of adjoint order preserving maps

P(T )
FR // P(S)
GR

oo

such that
- for any J ⊆ T , FR(J) is a subtopos of Ĉ

and GR ◦ FR(J) is the topology generated by J,
- for any I ⊆ S, GR(I) is a topology on C

and FR ◦ GR(I) is the subtopos generated by I.
• This induces a one-to-one correspondence{

topologies
on C

} FR
∼ //
∼

GR

oo

{
subtoposes

of Ĉ

}
.
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Reminder on the duality of sieves and subpresheaves:

• For any essentially small category C, there is a duality
between T = {(C ↪→ y(X )) | X = object of C, C = sieve on X }

and S ′ = {monomorphisms (Q ↪→ P) in Ĉ}
defined by the relation R ′ ↪−→ T × S ′

consisting in pairs (C ↪→ y(X ),Q ↪→ P) such that

∀ (X ′ x−→ X ), ∀p ∈ P(X ′), [x ′∗(p) ∈ Q(X ′′), ∀ (X ′′ x ′

−−→ X ′) ∈ x∗C] ⇒ p ∈ Q(X ′).
• This duality induces a pair of adjoint order preserving maps

P(T )
FR ′ // P(S ′)
GR ′
oo

such that
- for any J ⊆ T , FR ′(J) is a closedness property

and GR ′ ◦ FR ′(J) is the topology generated by J,
- for any I ⊆ S ′, GR ′(I) is a topology on C

and FR ′ ◦ GR ′(I) is the closedness property generated by I.
• This induces a one-to-one correspondence{

topologies
on C

} FR ′
∼ //
∼

GR ′

oo

{
closedness properties of
subpresheaves Q ↪→ P

}
.
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Reminder on topologies and closedness properties:
Definition. – Any J ⊆ T = {(C ↪→ y(X )) | X = object of C, C = sieve on X }

is a topology if and only if
• J contains maximal sieves J = y(X )

=
↪−→ y(X ),

• J is stable by pull-backs along morphisms X ′ x−−→ X,
• a sieve C ↪→ y(X ) belongs to J if there exists (C ′ ↪→ y(X )) ∈ J

such that (x∗C ↪→ y(X ′)) ∈ J, ∀ (X ′ x−−→ X ) ∈ C ′.

Definition. –
A property of subpresheaves I ⊆ S ′ = {(Q ↪→ P) = monomorphism of Ĉ}
is a “closedness property” if and only if:

• isomorphisms Q ∼−−→ P belong to I,
• I is stable by pull-backs along morphisms P ′ → P of Ĉ,
• I is stable under intersections in the sense that

(Qk ↪→ P) ∈ I, ∀k ∈ K ⇒ ( ⋂
k∈K

Qk ↪→ P
)

∈ I ,

• if, for any Q ↪→ P in Ĉ,
Q ↪→ P denotes the smallest element of I containing Q,
we have for any morphism P ′ → P P ′ ×P Q = P ′ ×P Q.
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Sieves and covering presieves:
• A sieve on an object X of C is a subobject

C ↪−→ y(X ) in Ĉ
or, equivalently, a collection of morphisms (X ′ x−−→ X )

such that, for any morphism X ′′ x ′

−−→ X ′,
(X ′ x−−→ X ) ∈ C ⇒ (x ◦ x ′ : X ′′ → X ′ → X ) ∈ C.

Definition. – A presieve on an object X of C is a family of morphisms
(xi : Xi −→ X )i∈I .

Remarks:
• Any such presieve generates a sieve which is

{X ′ x−−→ X | x factorizes though at least some Xi → X , i ∈ I}.
• Any sieve is generated by presieves.

Definition. –
Let J ⊆ T = {(C ↪→ y(X )) | sieves C on objects X of C} be a topology

or, more generally, a family of sieves stable under pull-backs along all X ′ x−→X.

Then a presieve (Xi
xi−−→ X )i∈I is called J-covering if and only if

its generated sieve contains some (C ↪→ y(X )) ∈ J.
L. Lafforgue Geometry and logic of subtoposes September 3-6, 2024 43 / 90



Stabilisation of families of sieves:

Definition. – A family of sieves J ⊆ T = {C ↪→ y(X )} will be called “stable”
if it is respected by pull-backs along morphisms X ′ x−−→ X of C.

Lemma. – Any family of sieves J ⊆ T = {C ↪→ y(X )}
generates a stable family which is

Js = {C ′ ↪→ y(X ′) | ∃ (X ′ x−−→ X ) , ∃ (C ↪→ y(X )) ∈ J , C ′ = x∗C}.

Remarks:
• One has the inclusions J ⊆ Js ⊆ J = topology generated by J

and they define
- the same subtopos FR(J) = FR(Js) = FR(J),
- the same closedness property FR ′(J) = FR ′(Js) = FR ′(J).

• A subpresheaf Q ↪−→ P
is J-closed, or Js-closed, or J-closed
if and only if, for any p ∈ P(X ) and any (C ↪→ y(X )) ∈ Js,

x∗(p) ∈ Q(X ′) , ∀ (X ′ x−−→ X ) ∈ C ⇒ p ∈ Q(X ).
• The family J induces a notion of Js-covering presieves.
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A closed formula for generated topologies:
Theorem (O.C., L.L., see [Engendrement] improving a formula of [TST]). –
Let J ⊆ T = {C ↪→ y(X )} be a class of sieves on objects X of C.
Let Js be the stabilisation of J

Js = {C ′ ↪→ y(X ′) | ∃ (X ′ x−−→ X ) , ∃ (C ↪→ y(X )) ∈ J , C ′ = x∗C}.
Let J be the topology on C generated by J or Js. Then a sieve on an object X
of C, C ↪−→ y(X ) belongs to J if and only if any sieve C ′ ↪→ y(X ) such that
• C ′ contains C,
• C ′ is Js-closed in the sense that an arbitrary morphism x : X ′ −→ X

belongs to C ′ if the sieve on X ′

{X ′′ x ′

−−→ X ′ | (x ◦ x ′ : X ′′ → X ) ∈ C ′}

contains an element of Js,
is the maximal sieve y(X )

=
↪−→ y(X ).

Proof: We already know that J, Js and J define
the same “closedness property” on subpresheaves Q ↪→ P
and so the same “closure operation” (Q ↪→ P) 7→ (Q ↪→ P).

The theorem statement means that C ↪→ y(X ) belongs to J
if and only if C = y(X ).
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Application to joins of topologies:

Corollary. –
Let (Jk )k∈K be a family of topologies on C.
Let J =

∨
k∈K

Jk

be the smallest topology which contains all Jk ’s, k ∈ K .
Then a sieve on a object X of C C ↪−→ y(X )
belongs to J if and only if any sieve C ′ ↪→ y(X ) such that{
• C ′ contains C,
• C ′ is Jk -closed for any k ∈ K ,

is the maximal sieve y(X )
=

↪−→ y(X ).

Proof:
• Indeed, the class Js of sieves C ↪→ y(X )

defined as the union of the classes Jk , k ∈ K ,
is stable under pull-backs along morphisms X ′ x−−→ X of C.
By definition, it generates the topology J.

• To conclude, we observe that a sieve C ′ ↪−→ y(X )
is Js-closed if and only if it is Jk -closed for any k ∈ K .
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Application to the construction of finite products of toposes:
Theorem. –
Consider topologies J1, · · · , Jn on essentially small categories C1, · · · , Cn.
Consider the product category C = C1 × · · · × Cn
endowed with the induced topologies J1, · · · , Jn.
Then the product topos in the 2-category of toposes

E = (̂C1)J1
× · · · × (̂Cn)Jn

can be constructed as the topos of sheaves on the product category
C = C1 × · · · × Cn

endowed with the topology J for wich
a sieve C ↪→ y(X1 × · · · × Xn) belongs to J

if and only if any sieve C ′ ↪→ y(X1 × · · · × Xn) such that{
• C ′ contains C,
• C ′ is Jk -closed for any k ∈ K ,

is the maximal sieve y(X1 × · · · × Xn)
=

↪−→ y(X1 × · · · × Xn).

This theorem is a consequence of the previous theorem and:
Proposition. – Let C and D be essentially small categories. Then the presheaf

topos Ĉ × D is a product of the presheaf toposes on C and D, Ĉ × D̂.
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Products of toposes and products of topological spaces:
• To any topological space X are associated
− the category CX of open subsets of X ,
− the topology JX on CX defined by the usual notion of covering,
− the topos EX = (̂CX )JX

of sheaves on X .
This defines a functor {category of topological spaces} −→ {category of toposes}.
• In particular, any topological spaces X1, · · · ,Xn define a topos morphism

EX1×···×Xn −→ EX1 × · · · × EXn .
Proposition. –
For the natural morphism EX1×···×Xn −→ EX1 × · · · × EXn to be an isomorphism,
it suffices that all factors Xi ’s, except possibly one, are locally compact.

Remark: If EX1×···×Xn −→ EX1 × · · · × EXn is an isomorphism of toposes,
the topos EX1×···×Xn of sheaves on X1 × · · · × Xn

can be constructed as the topos of sheaves on the product category CX1 × · · · × CXn

endowed with the topology J = JX1 ∨ · · ·∨ JXn

for which a sieve C ↪−→ y(U1 × · · · × Un) belongs to J
if and only if any sieve C ′ ↪→ y(U1 × · · · × Un) such that{
• C ′ contains C,
• C ′ is JXi -closed for any i , 1 ≤ i ≤ n,

is the maximal sieve on U1 × · · · × Un.
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Multicoverings:
• Let J be a class of sieves C ↪→ y(X ) of objects X of C.

Let Js be the “stabilisation” of J.
• A Js-covering of an object X is a presieve (xi : Xi −→ X )i∈I

whose generated sieve is maximal or contains an element of Js.

Definition. – A Js-multicovering of an object X of C is a sequence

· · · −→ Xn
fn−−→ Xn−1 −→ · · · f2−−→ X1

f1−−→ X0
where
• each Xk , k ∈ N, is a set of morphisms of C,
• all morphisms in X0 have target X and make up a Js-covering of X ,
• for any n ≥ 1 and xn ∈ Xn,

the target of xn is the source of fn(xn) ∈ Xn−1,
• for any n ≥ 1 and xn−1 ∈ Xn−1, the fiber

{xn ∈ Xn | fn(xn) = xn−1}

is empty or makes up a Js-covering of the source of xn−1,
• there is no infinite sequence xn ∈ Xn , n ∈ N,

such that fn(xn) = xn−1, ∀n ≥ 1.

L. Lafforgue Geometry and logic of subtoposes September 3-6, 2024 49 / 90



Explicitation of the operation of closure of subpresheaves:
• Let J be a class of sieves on C, Js its “stabilisation”

and J the generated topology.
• We know that J, Js and J define the same “closedness property” of

subpresheaves and the same operation of closure (Q ↪→ P) 7→ (Q ↪→ P).
Theorem (O.C., L.L., to appear in [Engendrement]). –
Consider a subpresheaf Q ↪→ P of a presheaf P on C.
Let Q ↪→ P be its closure with respect to J, Js or J.
Then an element p ∈ P(X )
belongs to Q(X )
if and only if there exists a Js-multicovering of X

· · · −→ Xn
fn−−→ Xn−1 −→ · · · f2−−→ X1

f1−−→ X0
such that, for any n ∈ N and xn ∈ Xn, we have
• either xn belongs to the image of Xn+1

fn+1−−−→ Xn,
• or the empty sieve on the source of xn is Js-covering,
• or, denoting xn−1 = fn(xn) , xn−2 = fn−1(xn−1), · · · , x0 = f1(x1),

the composite x0 ◦ x1 ◦ · · · ◦ xn : Xn −→ X
verifies the property (x0 ◦ x1 ◦ · · · ◦ xn)

∗(p) ∈ Q(Xn).
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Verification of stability under pull-backs:

• Consider as before J, Js and J.
Consider a subpresheaf Q ↪→ P.

• For any object X , let Q̃(X ) ⊆ P(X )
be the subset of elements of P which, as in the theorem,
can be sent into Q ↪→ P by some Js-multicovering.

• We first have to check that any morphism x : X ′ → X
sends Q̃(X ) ⊆ P(X ) into Q̃(X ′) ⊆ P(X ′).

• Given p ∈ Q̃(X ) and an adapted Js-multicovering of X

· · · −→ Xn
fn−−→ Xn−1 −→ · · · f2−−→ X1

f1−−→ X0,
it is enough to construct a Js-multicovering of X ′

as part of a commutative diagram

· · · // X ′
n

��

f ′
n // X ′

n−1

��

// · · ·
f ′
2 // X ′

1

��

f ′
1 // X ′

0

��
· · · // Xn

fn // Xn−1 // · · · f2 // X1 // X0
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such that

− for any x ′
n ∈ X ′

n of image xn ∈ Xn, there is an associated morphism

source (x ′
n)

tx ′
n−−→ source (xn)

− for any x ′
n ∈ X ′

n and its images xn ∈ Xn, x ′
n−1 ∈ X ′

n−1, xn−1 ∈ Xn−1,
the square

•
tx ′

n

��

x ′
n // •

tx ′
n−1
��

• xn // •


•

or tx ′
0

��

x ′
0 // X ′

x
��

• x0 // X

 is commutative.
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Verification of the closedness property:

• We have to verify that the subpresheaf
Q̃ ↪−→ P is closed.

• Consider an element p ∈ P(X )

such that there exists a Js-covering (Xk
xk−−→ X )k∈K

verifying x∗
k (p) ∈ Q̃(Xk ) , ∀ k ∈ K .

• By definition of Q̃, each Xk has a Js-multicovering

· · · −→ Xk
n

f k
n−−→ Xk

n−1 −→ · · · −→ Xk
1

f k
1−−→ Xk

0

which allows to send x∗
k (p) into Q ↪→ P.

• Then the formulas
X0 =

{
(Xk

xk−−→ X ) | k ∈ K
}

and
Xn =

∐
k∈K

Xk
n−1 for n ≥ 1

define a Js-multicovering of X
which sends p ∈ P(X ) into Q ↪→ P.

• This means that p ∈ Q̃(X ).
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Verification of minimality:

• Consider a subpresheaf Q ′ ↪→ P
which is closed with respect to J, Js or J and which contains Q ↪→ P.
We have to check that Q ′ contains Q̃ ↪→ P.

• Consider an element p ∈ Q̃(X ) and a Js-multicovering of X

· · · −→ Xn
fn−−→ Xn−1 −→ · · · −→ X1

f1−−→ X0
which sends p into Q.

• For any n ≥ 0, let X ′
n ⊆ Xn be the subset of elements xn

whose associated branch xn, fn(xn) = xn−1, · · · , f1(x1) = x0
verifies (x0 ◦ x1 ◦ · · · ◦ xn)

∗(p) /∈ Q ′(X ).
• We have to prove that all X ′

n, n ≥ 0, are empty.
• If they were not all empty, there would exist

n ≥ 0 and xn ∈ Xn such that
{xn+1 ∈ X ′

n+1 | fn+1(xn+1) = xn} = ∅.
This would yield a contradiction as{
− either {xn+1 ∈ Xn+1 | fn+1(xn+1) = xn} is Js-covering,
− or (x0 ◦ x1 ◦ · · · ◦ xn)

∗(p) ∈ Q(X ).
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An explicit formula for generated topologies:

• Let J be a class of sieves C ↪→ y(X ) on C,
Js be its “stabilisation” and J their generated topology.

Corollary. –
A sieve on an object X

C ↪−→ y(X )

belongs to the generated topology J
if and only if there exists a Js-multicovering of X

· · · −→ Xn
fn−−→ Xn−1 −→ · · · −→ X1

f1−−→ X0

such that, for any n ∈ N and xn ∈ Xn, we have

• either xn belongs to the image of Xn+1
fn+1−−−→ Xn,

• or the empty sieve on the source of xn is Js-covering,
• or, denoting

fn(xn) = xn−1, · · · , f1(x1) = x0 ,
the composite

x0 ◦ x1 ◦ · · · ◦ xn : Xn −→ X
is an element of C.
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Topological interpretations of geometric axioms:

• Consider a geometric first-order theory T
in a vocabulary (or “signature”) Σ consisting in
− object names (or “sorts”) Ai ,
− morphism names (or “function symbols”) f : A1 · · ·An → A,
− subobject names (or “relation symbols”) R ↣ A1 · · ·An.

Reminder. – For any model M of such a geometric theory T in a topos E ,

corresponding to a topos morphism E m−→ ET, we have:
(i) Any sort Ai interprets as an object MAi of E .

(ii) Any geometric formula φ(xA1
1 · · · xAn

n ) of Σ interprets as a subobject
Mφ(xA1

1 · · · xAn
n ) ↪−→ MA1 × · · · × MAn.

(iii) Any implication (or “sequent”) φ(xA1
1 , · · · , x

An
n ) ⊢ ψ(xA1

1 , · · · , x
An
n )

interprets as an embedding of subobjects of MA1 × · · · × MAn

M(φ∧ψ)(xA1
1 · · · xAn

n ) ↪−→ Mφ(xA1
1 · · · xAn

n )
which is an epimorphism (and so an isomorphism)
if and only if M verifies φ ⊢ ψ.
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Reduction from general geometric formulas to Horn formulas:

Definition. –
Let Σ be a first-order vocabulary (or “signature”).

(i) A geometric formula φ(x⃗) of Σ is called “atomic”
if it is deduced from relation or equality formulas

R(xA1
1 , · · · , x

An
n ) or xA

1 = xA
2

by replacing finitely many times variables by morphism formulas
xA = f (xB1

1 , · · · , x
Bm
m ) for f : B1 · · ·Bm → A in Σ.

(ii) A geometric formula φ(x⃗) of Σ is called Horn
if it is a finite conjunction of atomic formulas φi(x⃗)

φ(x⃗) = φ1(x⃗)∧ · · ·∧φk (x⃗) .

Lemma. –
Any geometric formula φ(x⃗) can be written in equivalent form

φ(x⃗) =
∨
i∈I

∃ (x⃗i)φi(x⃗i , x⃗)

where each φi(x⃗i , x⃗) is a Horn formula.
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Reduction to topological interpretations of Horn formulas:

Corollary. –
Let T be a geometric first-order theory in a vocabulary Σ.
Then it is possible to associate to any geometric sequent of Σ

φ(x⃗) ⊢ ψ(x⃗)
a double family Xx⃗,φ,ψ consisting in
• a family of Horn formulas

φi(x⃗i) , i ∈ I ,
• for each index i, a family of Horn formulas

φi,j(x⃗i , x⃗i,j) , j ∈ Ii ,

such that, for any model M of T in a topos E ,
the implication φ(x⃗) ⊢ ψ(x⃗) is verified by M
if and only if
• for any index i ∈ I, the family of projections in E

M(φi,j(x⃗i , x⃗i,j)∧φi(x⃗i)) −→ Mφi(x⃗i)
is globally epimorphic.
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Concrete reduction of geometric axioms to topology generation:

Proposition. – Let T be a geometric first-order theory in a vocabulary Σ.
Suppose that the classifying topos ET of T is presented as

ET ∼= ĈJ through ℓ : C → ET
where

• C has arbitrary finite limits, i.e. finite products and fiber products,
• any “sort” A of Σ interprets as an object UA of C,
• any “function symbol” f : A1 · · ·An → A of Σ interprets

as a morphism of C Uf : UA1 × · · · × UAn → UA,
• any “relation symbol” R ↣ A1 · · ·An of Σ interprets

as a subobject of C UR ↪−→ UA1 × · · · × UAn,
so that any Horn formula φ(xA1

1 · · · xAn
n ) of Σ interprets

as a subobject of C Uφ ↪−→ UA1 × · · · × UAn.
Then a geometric sequent φ(x⃗) ⊢ ψ(x⃗) of Σ is provable
in a quotient theory T ′ of T corresponding to a topology J ′ ⊇ J
if and only if the associate families of projection morphisms

(U(φi,j(x⃗i , x⃗i,j)∧φi(x⃗i)) −→ Uφi(x⃗i))j∈Ii , i ∈ I ,
defined by the double family of Horn formulas Xx⃗,φ,ψ
are J ′-coverings.
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The problem of presentations of classifying toposes:
Problem. – Given a geometric first-order theory T in a vocabulary Σ,
how to present its classifying topos in terms of a site (C, J)

ET ∼= ĈJsuch that{
• C has arbitrary finite limits,
• elements of the vocabulary Σ interpret in C.

Hints:
• One may take{

C = CT (syntactic category of T),
J = JT (syntactic topology on CT).

• More generally, one may write
T = quotient of a theory T0 in the same vocabulary Σ, and take
C = CT0 (syntactic category of T0),
J = topology on CT0 generated by JT0

and the covering families associated with the axioms of T.
• Even more generally, one can first replace T by
T ′ = geometric first-order theory in a vocabulary Σ ′

which is “syntactically equivalent” in the sense that CT ∼= CT ′ .
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The case of presheaf type theories:

Definition. – A geometric first-order theory T in a vocabulary Σ
is called “presheaf type” if its classifying topos
is a topos of presheaves ET ∼= Ĉ on some category C.

Examples:
• Any theory T consisting in a vocabulary Σ without axioms is

presheaf type.
• More generally, any “cartesian theory” is presheaf type.
• In particular, any “algebraic” or “Horn” theory is presheaf type.

Theorem (O.C., see [TST]). – For any presheaf type theory T, one has
ET ∼= Ĉ

for C = C ir
T
∼= (T-mod (Set))op

ft where
• C ir

T is the full subcategory of CT
on objects which are “irreducible” in the sense that
their only JT-covering sieve is the maximal sieve.

• T-mod (Set)fp is the full subcategory of T-mod (Set)
on set-valued models of T which are
“finitely presentable” by geometric formulas.

L. Lafforgue Geometry and logic of subtoposes September 3-6, 2024 61 / 90



The case of cartesian theories:

Theorem. –
If T is a “cartesian” theory, it is presheaf type and one can write

ET ∼= Ĉ
with C = C ir

T = Ccart
T

where Ccart
T is the “syntactic cartesian theory” of T consisting in

• objects which are “cartesian formulas”
in the vocabulary Σ of T, meaning formulas of the form

(∃ y⃗)φ(x⃗ , y⃗)
where φ(x⃗ , y⃗) is a Horn formula
and the sequent

φ(x⃗ , y⃗)∧φ(x⃗ , y⃗ ′) ⊢ y⃗ = y⃗ ′ is provable in T,

• morphisms which are “cartesian formulas” θ(x⃗ , y⃗)

φ(x⃗)
θ(⃗x ,⃗y)−−−−−→ ψ(y⃗)

which are T-provably functional.
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Reduction to theories without function symbols:

Lemma. – For any geometric first-order theory T in a vocabulary Σ,
there is a syntactically equivalent geometric theory T ′

whose vocabulary Σ ′ does not contain function symbols.

Remark: The meaning of “syntactically equivalent” is that
the syntactic categories CT and CT ′ of T and T ′ are equivalent:

CT ∼= CT ′ ,
implying

ET ∼= ET ′ .
Proof:
• Replace each function symbol f : A1 · · ·An → A of Σ

by a relation symbol Rf ↪→ A1 · · ·AnA completed by the axioms{
Rf (x

A1
1 , · · · , x

An
n , yA)∧ Rf (x

A1
1 , · · · , x

An
n , zA) ⊢ yA = zA ,

⊤ ⊢
xA1

1 ,··· ,x
An
n

(∃ yA)Rf (x
A1
1 , · · · , x

An
n , yA) .

• Then replacing each substitution of variables
yA = f (xA1

1 , · · · , x
An
n ) by Rf (x

A1
1 , · · · , x

An
n , yA)

and each relation Rf (x
A1
1 , · · · , x

An
n , yA) by the equality f (xA1

1 , · · · , x
An
n ) = yA

defines an equivalence of categories CT ∼= CT ′ .
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The case of theories without function symbols and without axioms:
In that case, the cartesian syntactic category and the classifying topos
can be described fully explicitly:

Proposition. – Let Σ be a vocabulary without function symbols.
Then one can write EΣ ∼= Ĉ
where C = Ccart

Σ is the syntactic cartesian category of Σ explicited as follows:

(1) The objects of C = Ccart
Σ are finite conjunctions

φ(xA1
1 , · · · , x

An
n ) =

∧
1≤k≤ℓ

φk (x
A1
1 , · · · , x

An
n )

of atomic formulas φk (x
A1
1 , · · · , x

An
n )

which are relation symbols R(x
Ai1
i1
, · · · , xAim

im
)

or equality relations x
Ai1
i1

= x
Ai2
i2

= · · · = x
Aim
im

in part of the variables xA1
1 , · · · , x

An
n .

(2) The morphisms of C = Ccart
Σ

φ(xA1
1 , · · · , x

An
n ) −→ ψ(x

Aα1
α1 , · · · , x

Aαn ′
αn ′ )

are projections associated with maps
α : {1, · · · , n ′} → {1, · · · , n}

which transform all atomic components of ψ into atomic components of φ.
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IV. Geometric operations on subtoposes

• Unions, intersections and differences of subtoposes
- Topological expressions.
- Logical expressions.

• Existential push-forward and pull-back of subtoposes
- Logical expression of push-forward.
- Semantic expression of pull-back.
- Topological expression of push-forward and pull-back.
- Actions of correspondences and their topological expression.

• Compatibility of pull-backs with unions of subtoposes
- The case of locally connected morphisms and its consequences.
- Fibrations, Giraud topologies and locally connected morphisms.
- Factorizations of topos morphisms through locally connected morphisms.
- Galois correspondences associated with essential morphisms of toposes.
- Characterization of pull-backs under essential morphisms.
- Characterization of pull-backs under locally connected morphisms.
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Unions, intersections and differences of toposes:

Proposition. – Let E be a topos.
(i) Any family of subtoposes (Ei ↪→ E)i∈I

has a union
∨
i∈I

Ei ↪→ E and an intersection
∧
i∈I

Ei ↪→ E

characterized by the properties that, for any subtopos E ′ ↪→ E ,∨
i∈I

Ei ⊆ E ′ ⇔ Ei ⊆ E ′ , ∀ i ∈ I ,

E ′ ⊆
∧
i∈I

Ei ⇔ E ′ ⊆ Ei , ∀ i ∈ I .

(ii) For any subtoposes E1, E2 of E , there exists a subtopos
E1\E2 ↪→ E characterized by the property that, for any E ′ ↪→ E ,

E1\E2 ⊆ E ′ ⇔ E1 ⊆ E2 ∨ E ′.

Remark: (ii) means that the functor E ′ 7→ E2 ∨ E ′

has a left-adjoint E1 7→ E1\E2.

Corollary. –
(i) The functor E ′ 7→ E2 ∨ E ′ respects arbitrary intersections.
(ii) As a formal consequence, intersection functors

E ′ 7→ E1 ∧ E ′ respect finite unions of subtoposes.
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Topological expressions of unions, intersections and differences of subtoposes:

Proposition. – Let E = ĈJ be the topos of sheaves on a site (C, J).
(i) For a family of subtoposes Ei = ĈJi ↪→ ĈJ =E defined by topologies Ji , i ∈ I,

their union
∨
i∈I

Ei is defined by the topology
∧
i∈I

Ji and their intersection
∧
i∈I

Ei

is defined by the topology
∨
i∈I

Ji generated by the topologies Ji , i ∈ I.

(ii) For subtoposes E1 = ĈJ1 and E2 = ĈJ2 defined by topologies J1, J2,
their difference E1\E2 is defined by the topology J0 = (J2 ⇒ J1)

for which a sieve C on an object X is covering if and only if

• for any morphism X ′ x−→ X of C,
the maximal sieve is the only sieve on X ′ which{
− contains x∗C,
− is J1-closed and J2-covering.

Reminder: A sieve C on an object X is covering for
∨
i∈I

Ji

if and only if the maximal sieve is the only sieve on X which{
− contains C,
− is Ji -closed for any i ∈ I.
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Logical expressions of unions and intersections of subtoposes:

Proposition. –
Let E = ET be the classifying topos of a geometric first-order theory T.
Let Ei = ETi ↪→ ET = E , i ∈ I, be a family of subtoposes of E
which classify quotient theories Ti of T. Then:

(i) The intersection subtopos
∧
i∈I

Ei ↪−→ E

classifies the quotient theory
∨
i∈I

Ti of T

defined by the join of the families of axioms of all Ti ’s.
(ii) The union subtopos

∨
i∈I

Ei ↪−→ E

classifies any quotient theory T ′ of T
such that a geometric sequent φ ⊢ ψ in the vocabulary of T
is provable in T ′ if and only if it is provable in each Ti , i ∈ I.

Remark: In practice, unions
∨
i∈I

ETi can be computed

if ET and its subtoposes ETi ↪→ ET can be presented as
ET ∼= ĈJ and ETi

∼= ĈJi , i ∈ I ,
for some explicit topologies Ji , i ∈ I, on a small category C.
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Logical expressions of differences of subtoposes:

Proposition (O.C., see chapter 4 of [TST]). –
Let E = ET be the classifying topos of a geometric first-order theory T.
Let E1 = ET1 ↪→ ET = E and E2 = ET2 ↪→ ET = E
be the classifying toposes of quotient theories T1,T2 of T.
Then the difference subtopos E1\E2 ↪−→ E
classifies the quotient theory of T T ′ = (T2 ⇒ T1)
defined from T by adding as axioms the geometric implications

ψ(y⃗) ⊢ ψ ′(y⃗)
such that:
• the reverse implication ψ ′(y⃗) ⊢ ψ(y⃗) is provable in T,

• for any geometric formula φ(x⃗) in the vocabulary of T,
for any T-provably functional geometric formula

θ(x⃗ , y⃗) : φ(x⃗) −→ ψ(y⃗)
and for any geometric formula χ(x⃗) verifying the conditions− χ(x⃗) ⊢ φ(x⃗) is T-provable,
− φ(x⃗) ⊢ χ(x⃗) is T2-provable,
− (∃ y⃗)(θ(x⃗ , y⃗)∧ψ ′(y⃗)) ⊢ χ(x⃗) is T-provable,

then φ(x⃗) ⊢ ψ(x⃗) is T1-provable.
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Proof of the logical expressions of differences of subtoposes:

The proof is based on the following theorem:
Theorem. – Let T be a geometric first-order theory.

(i) The classifying topos ET of T can be constructed as the topos of sheaves

ET = (̂CT)JT
on the geometric syntactic category CT of T endowed with the syntactic topology JT.

(ii) The canonical functor ℓ : CT → ET is fully faithful.

(iii) For any object of CT, i.e. any geometric formula φ(x⃗),

the subobjects of ℓ(φ(x⃗)) in ET correspond to subobjects of φ(x⃗) in CT,

i.e. to formulas χ(x⃗) such that χ(x⃗) ⊢ φ(x⃗) is T-provable.

(iv) In particular, any sieve on an object φ(x⃗) of CT has an image which is a
geometric formula χ(x⃗) such that χ(x⃗) ⊢ φ(x⃗) is T-provable.

Sketch of the proof of the logical expression of a difference:
Subtoposes ET1 and ET2 of ET are defined by topologies

J1 ⊇ JT and J2 ⊇ JT on CT
such that, for any sieve on an object φ(x⃗) of CT, it is covering for J1 [resp. J2]
if and only if its image χ(x⃗) verifies the condition that

φ(x⃗) ⊢ χ(x⃗) is provable in T1 [resp. T2].
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The logical expression of existential push-forward of subtoposes:

Consider a morphism of toposes E ′ e−−→ E
presented in the form E ′ = ĈJ −→ ET = E which corresponds to a model M
of a geometric first-order theory T in the topos of sheaves on a site (C, J).

Proposition. – For any subtopos E ′
1 ↪→ E ′ corresponding to a topology J1 ⊇ J

and a sheafification functor j∗ : E ′ = ĈJ −→ ĈJ1 = E ′
1,

let T1 be a quotient theory of T
such that any geometric implication in the vocabulary of T

φ(x⃗) ⊢ ψ(x⃗)
is T1-provable if an only if j∗ transforms the embedding of ĈJ

M(φ∧ψ) ↪−→ Mφ
into an isomorphism of ĈJ1 .
Then T1 defines the smallest subtopos

e∗(E ′
1) = ET1 ↪−→ ET

such that the composite morphism

E ′
1 ↪−→ E ′ e−−→ E = ET

factorizes through e∗(E ′
1) ↪−→ E = ET.
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A semantic expression of pull-back of subtoposes:

We still consider a morphism of toposes ĈJ = E ′ e−−→ E = ET
which corresponds to a model M of T in ĈJ .

Proposition. – For any subtopos E1 ↪→ E = ET
corresponding to a quotient theory T1 of T
defined by a list of extra axioms

φi ⊢ ψi , i ∈ I ,
consider the topology J1 on C
which is generated by J and the stable family of sieves

M(φi ∧ψi)×Mφi y(X )
associated with
• the extra axioms φi ⊢ ψi , i ∈ I,
• objects X of C embedded via y : C ↪→ Ĉ,
• elements of Mφi(X ) interpreted as morphisms y(X ) → Mφi in Ĉ.

Then the topology J1 on C defines a subtopos
e−1E1 = ĈJ1 ↪−→ ĈJ = E ′

such that, for any subtopos E ′
1 ↪→ E ′,

e−1E1 ⊇ E ′
1 ⇔ E1 ⊇ e∗E ′

1 .
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A topological expression of push-forward of subtoposes:

Consider a morphism of toposes E ′ e−−→ E
presented in the form E ′ −→ E = ĈJ

which corresponds to a functor ρ : C ℓ−→ ĈJ
e∗

−−→ E ′

which is “flat” and “J-continuous”.

Proposition. –
For any subtopos E ′

1 ↪→ E ′

and the associated functor j∗ : E ′ → E ′
1,

let J1 ⊇ J be the topology on C
for which a sieve C on an object X of C is covering
if and only if its transform by

j∗ ◦ ρ : C ℓ−→ ĈJ
e∗

−−→ E ′ j∗−−→ E ′
1

is a globally epimorphic family of morphisms.
Then the subtopos defined by J1

ĈJ1 ↪−→ ĈJ = E
is the push-forward of E ′

1 ↪→ E ′ by e : E ′ → E
e∗(E ′

1) ↪−→ E .
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A topological expression of push-forward of subtoposes:

We still consider a morphism of toposes E ′ e−−→ E = ĈJ

corresponding to a functor ρ : C ℓ−→ ĈJ
e∗

−−→ E ′

and its unique colimit preserving extension ρ̂ : Ĉ → E ′.
As ρ is “flat”, ρ̂ respects finite limits.

Proposition. –
For any subtopos E1 ↪→ E = ĈJ
defined by a topology J1 ⊇ J on C,
its pull-back by the morphism e : E ′ → E

e−1E1 ↪−→ E ′

is defined by the topology on E ′

generated by the monomorphisms
ρ̂(C) ↪−→ ρ̂ ◦ y(X ) = e∗ ◦ ℓ(X ) = ρ(X )

obtained as the transformations by ρ̂
of any family of sieves on C

(C ↪−→ y(X ))
which generates the topology J1 on C from J.
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Correspondences and their actions on subtoposes:

Definition. –
(i) A correspondence between a pair of toposes E and E ′

is a pair of topos morphisms from a third topos EΓ
E ′ EΓ

poo q // E .
(ii) Such a correspondence is called “embedded”

if the associated morphism
EΓ −→ E ′ × E

is an embedding.

Definition. – The action of a correspondence E ′ EΓ
poo q // E

on subtoposes is the map
q∗ ◦ p−1 : {subtoposes of E ′} −→ {subtoposes of E}.

Remark: Any correspondence E ′ EΓ
poo q // E

defines an embedded correspondence EΓ as the image of
EΓ −→ E ′ × E .

But the actions on subtoposes of EΓ and EΓ are not the same in general,

even if p = id and E ′ = E ′
Γ

q−−→ E is a morphism.
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A topological expression of the action of embedded correspondences:

Consider a pair of toposes of sheaves E ′ = D̂K and E = ĈJ .

Their product can be presented as E ′ × E = ̂(D × C)K×J
if K × J denotes the topology on D × C generated by K and J.

Proposition. –
Consider an embedded correspondence EΓ ↪→ E ′ × E = ̂(D × C)K×J
corresponding to a topology Γ on D × C which contains K and J.
Then, for any subtopos

E ′
1 ↪−→ E ′ corresponding to a topology K1 ⊇ K on D,

its transform by the correspondence EΓ is the subtopos
E1 ↪−→ E

defined by the topology J1 ⊇ J on C
for which a sieve

C on an object X of C
is covering if and only if, for any object Y of D,

C considered as a sieve on the object (Y ,X ) of D × C
is covering for the topology generated by Γ and K1.
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The theorem on compatibility of pull-backs and unions of subtoposes:

For any topos morphism e : E ′ → E , the associated maps

{subtoposes of E ′}
e∗
// {subtoposes of E}

e−1
oo

are adjoint.
So e−1 respects arbitrary intersections of toposes
and e∗ respects arbitrary unions.
In general, e∗ does not respect even finite intersections.
On the other hand, we are going to sketch the proof of:

Theorem. – Let e : E ′ → E be a morphism of toposes. Then:

(i) The induced pull-back map e−1 respects finite unions of toposes.
(ii) If the morphism e is “locally connected”

e−1 even respects arbitrary unions of toposes
and, as a consequence, has a left adjoint

e! : {subtoposes of E ′} −→ {subtoposes of E}
characterized by the property that,
for any subtoposes E ′

1 ↪→ E ′ and E1 ↪→ E ,
e! E ′

1 ⊇ E1 ⇐⇒ E ′
1 ⊇ f−1E1 .
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Reminder on “locally connected” morphisms:

Definition. –
(i) A topos morphism e = (e∗,e∗) : E ′ → E is called “essential” if

e∗ : E → E ′ also has a left adjoint e! : E ′ → E .
(ii) An essential morphism of toposes

e = (e!,e∗,e∗) : E ′ → E
is called “locally connected” if, for any base change morphism E1

b−−→ E ,
the induced morphism f = (f ∗, f∗) : E ′

1 = E ′ ×E E1 → E1
is still essential, and the adjoint squares

E ′
1

f!
��

E ′b ′∗
oo

e!

��
E1 Eb∗
oo

E ′
1

b ′
∗ // E ′

E1

f∗

OO

b∗ // E

e∗

OO

are commutative.

Remark: It can be proved that, in order to verify that
an essential morphism e = (e!,e∗,e∗) : E ′ → E
is “locally connected”, it is enough to consider base changes
by morphisms E1 = E/E → E associated to objects E of E .

L. Lafforgue Geometry and logic of subtoposes September 3-6, 2024 78 / 90



Reduction to the case of locally connected morphisms:

We already know that functors of intersections with a subtopos E ′ ↪→ E
respect finite unions.
So part (i) of the theorem is reduced to part (ii) and the following:

Proposition. – Any topos morphism E ′ → E factorizes as
E ′ ↪−→ Ĉ ′

J ′ −→ ĈJ
∼−−→ E where

• E ′ ↪−→ Ĉ ′
J ′ is an embedding of toposes,

• Ĉ ′
J ′ −→ ĈJ is induced by a fibration C ′ p−−→ C,

• J ′ = p∗(J) is the “Giraud topology” induced by J from C to C ′,
• ĈJ

∼−−→ E is an equivalence.

Theorem. –
If C ′ p−−→ C is a fibration
and J ′ = p∗(J) is the “Giraud topology” on C ′

induced by a topology J on C,
the induced topos morphism

p : Ĉ ′
J ′ −→ ĈJ

is “locally connected”.
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Reminder on fibrations:
Definition. – Consider a functor p : C → B.
(i) A morphism x : X1 → X2 of C is called “p-cartesian”

if, for any morphism x2 : X → X2 of C
and any morphism y1 : p(X ) → p(X1) of B such that p(x2) = p(x) ◦ y1,
there is a unique morphism x1 : X → X1
such that x2 = x ◦ x1 and p(x1) = y1.

(ii) The functor p : C → B is called a “fibration”
if, for any object X1 of C and any morphism Y

y1−−→ p(X1) of B,

there exists a p-cartesian morphism X x1−−→ X1 of C
and an isomorphism y : p(X )

∼−−→ Y such that p(x1) = y1 ◦ y.

Proposition. – Consider a fibration p : C → B of essentially small categories.
Then for any functor B ′ → B from an essentially small category B ′ to B,
the induced fucntor C ×B B ′ → B ′ is still a fibration, and the topos square

̂C ×B B ′

��

// Ĉ

is cartesian.
��

B̂ ′ // B̂
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Reminder on Giraud topologies:

Proposition. –
Consider a fibration of essentially small categories

p : C ′ −→ C
and the essential morphism it defines

p = (p!,p∗,p∗) : Ĉ ′ −→ Ĉ.
Then, for any subtopos

ĈJ ↪−→ Ĉ,
its pull-back by p

Ĉ ′
J ′ ↪−→ Ĉ ′

is the subtopos defined by the “Giraud topology” J ′ on C ′ for which

a sieve C on an object X of C ′ is covering
if and only if the images by p

p(x) : p(X ′) −→ p(X )
of the p-cartesian morphisms contained in C

x : X ′ −→ X
make up a J-covering family of the object p(X ) of C.
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Fibrations and locally connected morphisms:

Corollary. – Consider a fibration p : C ′ → C of essentially small categories.
Then:
(i) The map

{topologies on C} −→ {topologies on C ′}

J 7−→ J ′ = Giraud topology induced by J
respects arbitrary intersections of topologies. In other words, the map

p−1 : {subtoposes of Ĉ} −→ {subtoposes of C ′}

respects arbitrary unions of subtoposes.
(ii) For any topology J on C and the induced Giraud topology J ′ on C ′,

the functor of composition with p
p∗ : Ĉ −→ Ĉ ′

transforms J-sheaves into J ′-sheaves and respects arbitrary limits.
In other words, there are two adjoint commutative squares:

Ĉ ′
J ′

p!

Ĉ ′j ′∗oo

p!

ĈJ Ĉ
j∗oo

Ĉ ′
J ′
� � j ′∗ // Ĉ ′

ĈJ

p∗

OO

� � j∗ // Ĉ

p∗

OO
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Factorization of topos morphisms:

• Consider an arbitrary topos morphism E ′ e−−→ E .

• We can write E ∼= ĈJ , E ′ ∼= D̂K

where C ↪→ E , D ↪→ E ′ are small full subcategories
such that e∗ : E → E ′ restricts to a functor ρ : C → D.

Theorem (O.C., see [Denseness]). – Consider the small category C ′ = D/C whose
− objects are triplets (Y ,X ,Y → ρ(X )) consisting in

objects Y of D, X of C and a morphism Y t−→ ρ(X ) of D,

− morphisms (Y1,X1,Y1
t1−→ ρ(X1)) −→ (Y2,X2,Y2

t2−→ ρ(X2))

are pairs of compatible morphisms (Y1
y−→ Y2,X1

x−→ X2).
Let K ′ and J ′ be the topologies on C ′ = D/C
induced by K and J via the forgetful functors D/C → D and D/C → C. Then:

(i) The morphism Ĉ ′
K ′ → D̂K induced by C ′ = D/C → D is an

equivalence of toposes.
(ii) The topology K ′ contains J ′, and there is an embedding Ĉ ′

K ′ ↪→ Ĉ ′
J ′ .

(iii) The forgetful functor C ′ = D/C → C is a fibration

and J ′ is the “Giraud topology” induced by J.
(iv) The topos morphism E ′ e−→ E factorizes as D̂K ∼= Ĉ ′

K ′ ↪−→ Ĉ ′
J ′ −→ ĈJ .
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Galois correspondences between subobjects:
Lemma. –
Consider an essential morphism of toposes e = (e!,e∗,e∗) : E ′ → E .
For any object E ′ of E ′, consider the two maps

{subobjects C ′ ↪→ E ′}
FE ′ // {subobjects C ↪→ e!E ′}
GE ′
oo

defined by
FE ′(C ′ ↪→ E ′) = (Im e!C ′ ↪→ e!E ′),

GE ′(C ↪→ e!E ′) = (e∗C ×e∗e!E ′ E ′ ↪→ E ′).
Then, these maps respect the order relations ⊆ on these sets,
and FE ′ is left adjoint of GE ′ .

Corollary. –
(i) There is an induced one-to-one correspondence between

the (C ′ ↪→ E ′) which are fixed under GE ′ ◦ FE ′

and the (C ↪→ e!E ′) which are fixed under FE ′ ◦ GE ′ .
(ii) For any C ′ ↪→ E ′, its image under GE ′ ◦ FE ′

is the smallest fixed point which contains it.
(iii) For any C ↪→ e!E ′, its image under FE ′ ◦ GE ′

is the biggest fixed point which is contained in it.
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Union of fixed points:

We still consider an essential morphism e = (e!,e∗,e∗) : E ′ → E .

Lemma. –
For any family of subobjects of an object E ′ of E ′

C ′
k ↪−→ E ′, k ∈ K , which are fixed under GE ′ ◦ FE ′ ,

their union ∨
k∈K

C ′
k ↪−→ E ′ is fixed under GE ′ ◦ FE ′ .

Proof:
If each C ′

k ↪→ E ′ corresponds to a fixed subobject Ck ↪→ e!E ′, the formulas
C ′

k = e∗Ck ×e∗e!E ′ E ′, k ∈ K ,
induce the formula ∨

k∈K
C ′

k = e∗
( ∨

k∈K
Ck

)
×e∗e!E ′ E ′.

Corollary. –
For any object E ′ of C ′,
any subobject C ′ ↪→ E ′

contains a biggest fixed subobject
◦

C ′ ↪−→ C ′ ↪−→ E ′.
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Stability of fixed points:

Lemma. –
Consider an essential morphism of toposes e = (e!,e∗,e∗) : E ′ → E .
Then:
(i) For any morphism E ′

2 → E ′
1 of E ′, the map

(C ′ ↪−→ E ′
1) 7−→ (C ′ ×E ′

1
E ′

2 ↪−→ E ′
2)

transforms
any image under GE ′

1
of some C ↪→ e!E ′

1
into the image under GE ′

2
of C ×e!E ′

1
e!E ′

2.
(ii) For any object E of E and any subobject C ↪→ E,

the associated subobject
e∗C ↪−→ e∗E

is the image under Ge∗E of the subobject
C ×E e!e∗E ↪−→ e!e∗E.

Proof:
(i) comes from the fact that e∗ respects fiber products.
(ii) Indeed, if C1 = C ×E e!e∗E ↪→ e!e∗E , we have

e∗C1 ×e∗e!e∗E e∗E = (e∗C ×e∗E e∗e!e∗E)×e∗e!e∗E e∗E = e∗C ↪→ e∗E .
L. Lafforgue Geometry and logic of subtoposes September 3-6, 2024 86 / 90



Characterization of pull-backs under essential morphisms:

Theorem (O.C., L.L., to appear in [Engendrement]). –
Consider an essential morphism of toposes e = (e!,e∗,e∗) : E ′ → E .
Then for any subtoposes defined by a topology J on E

EJ ↪−→ E ,
its pull-back under e : E ′ → E is defined by the topology J ′

consisting in monomorphisms C ′ ↪→ E ′ of E ′

verifying the condition that{
there exists a monomorphism (C ↪→ e!E ′) in J
such that (C ′ ↪→ E ′) contains (e∗C ×e∗e!E ′ E ′ ↪→ E ′).

Proof:
• The topology J ′ on E ′ which defines the pull-back of EJ ↪→ E

is generated by the monomorphisms (e∗C ↪→ e∗E)
induced by elements (C ↪→ E) of J.

• According to part (ii) of the previous lemma,
all these generators belong to the class J ′′

of monomorphisms (C ′ ↪→ E ′) which verify the above condition.
• As J ′ is stable, we also have that J ′′ ⊆ J ′.
• To conclude, we need to prove that J ′′ is a topology on E ′.
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Verification of the topology axioms:
• We are reduced to proving that the class J ′′ of monomorphisms

(C ′ ↪→ E ′) such that there exists (C ↪→ e!E ′) in J
verifying e∗C ×e∗e!E ′ E ′ ⊆ C ′ is a topology on E ′.

• It obviously verifies the maximality axioms.
• Stability results from part (i) of the previous lemma.
• For transitivity, consider two monomorphisms of E ′

C ′ ↪→ E ′ and D ′ ↪→ E ′

and a globally epimorphic family (E ′
k → D ′)k∈K

such that there exist elements of J
D ↪→ e!E ′ and Ck ↪→ e!E ′

k , k ∈ K ,
verifying
D ′ ⊇ e∗D ×e∗e!E ′ E ′ and C ′ ×E ′ E ′

k ⊇ e∗Ck ×e∗e!E ′
k

E ′
k , k ∈ K .

The family of morphisms e!E ′
k → e!D ′, k ∈ K , is still globally epimorphic.

Let C ↪→ e!E ′ be the union of the images of the morphisms
Ck ↪−→ e!E ′

k −→ e!D ′ −→ e!E ′.
Then{
− the monomorphism C ↪→ e!E ′ belongs to J,
− the subobject C ′ ↪→ E ′ contains e∗C ×e∗e!E ′ E ′,

which proves that J ′′ verifies transitivity.
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Characterization of pull-backs under locally connected morphisms:

Theorem (O.C., L.L., to appear in [Engendrement]). –
Consider a locally connected topos morphism

e = (e!,e∗,e∗) : E ′ → E .
Consider a subtopos defined by a topology J on E

EJ ↪−→ E
and its pull-back by e defined by a topology J ′ on E ′

E ′
J ′ ↪−→ E ′.

Then a monomorphism of E ′

C ′ ↪−→ E ′

belongs to J ′ if and only if its biggest fixed subobject
◦

C ′ ↪−→ E ′

corresponds to a fixed subobject
C ↪−→ e!E ′

which belongs to J.

As this characterization respects intersections of topologies, we get:

Corollary. – If a topos morphism e : E ′ → E is locally connected,
the associated pull-back map e−1 on subtoposes
respects arbitrary unions, so has a left adjoint e!.
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Characterization in the case of fixed points:
We consider the locally connected morphism

e = (e!,e∗,e∗) : E ′ −→ E ,
a subtopos EJ ↪→ E defined by a topology J
and its pull-back E ′

J ′ ↪→ E ′ defined by a topology J ′.
The proof of the theorem reduces to:
Lemma. – For any object E ′ of E ′ and any fixed subobject C ′ ↪→ E ′,
which corresponds to a fixed subobject C ↪→ e!E ′,
the monomorphism C ′ ↪→E ′ belongs to J ′ if and only if C ↪→e!E ′belongs to J.

Proof:
• As C ′ = e∗C ×e∗e!E ′ E ′, C ′ ↪→ E ′ belongs to J ′ if C ↪→ e!E ′ belongs to J.
• The implication in the reverse direction

is a consequence of the commutativity of the square

E ′
J ′

e!

��

E ′j ′∗oo

e!

��
EJ E

j∗oo

which is part of the definition of “local connectedness” of e.
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